These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37830780)

  • 61. Soil fauna drives vertical redistribution of soil organic carbon in a long-term irrigated dry pine forest.
    Guidi C; Frey B; Brunner I; Meusburger K; Vogel ME; Chen X; Stucky T; Gwiazdowicz DJ; Skubała P; Bose AK; Schaub M; Rigling A; Hagedorn F
    Glob Chang Biol; 2022 May; 28(9):3145-3160. PubMed ID: 35124879
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum.
    von Rein I; Gessler A; Premke K; Keitel C; Ulrich A; Kayler ZE
    Glob Chang Biol; 2016 Aug; 22(8):2861-74. PubMed ID: 26946456
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest.
    Maillard F; Kennedy PG; Adamczyk B; Heinonsalo J; Buée M
    Mol Ecol; 2021 Apr; 30(8):1921-1935. PubMed ID: 33544953
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover.
    Wang X; Wang C; Cotrufo MF; Sun L; Jiang P; Liu Z; Bai E
    Glob Chang Biol; 2020 Sep; 26(9):5277-5289. PubMed ID: 32506540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of soil warming on soil microbial extracellular enzyme activities with different depths in a young Chinese fir (Cunninghamia lanceolata)plantation of subtropics.
    Zheng W; Zhou JC; Lin WS; Zheng Y; Li C; Li XF; Ji YH; Yang ZJ
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):832-840. PubMed ID: 30912375
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Warming drives a 'hummockification' of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands.
    Maillard F; Fernandez CW; Mundra S; Heckman KA; Kolka RK; Kauserud H; Kennedy PG
    New Phytol; 2022 Jun; 234(6):2032-2043. PubMed ID: 34559896
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fungal necromass increases soil aggregation and organic matter chemical stability under improved cropland management and natural restoration.
    Liu L; Gunina A; Zhang F; Cui Z; Tian J
    Sci Total Environ; 2023 Feb; 858(Pt 3):159953. PubMed ID: 36368393
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest.
    Su X; Su X; Yang S; Zhou G; Ni M; Wang C; Qin H; Zhou X; Deng J
    Sci Total Environ; 2020 Sep; 736():139568. PubMed ID: 32485376
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stabilization of organic carbon in top- and subsoil by biochar application into calcareous farmland.
    Wang Y; Yin Y; Joseph S; Flury M; Wang X; Tahery S; Li B; Shang J
    Sci Total Environ; 2024 Jan; 907():168046. PubMed ID: 37890636
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Differential sensitivity of total and active soil microbial communities to drought and forest management.
    Bastida F; Torres IF; Andrés-Abellán M; Baldrian P; López-Mondéjar R; Větrovský T; Richnow HH; Starke R; Ondoño S; García C; López-Serrano FR; Jehmlich N
    Glob Chang Biol; 2017 Oct; 23(10):4185-4203. PubMed ID: 28614633
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubation.
    Yan D; Li J; Pei J; Cui J; Nie M; Fang C
    Sci Rep; 2017 Jul; 7(1):5181. PubMed ID: 28701687
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China's forests from tropical to boreal zone.
    Ma S; Chen G; Du E; Tian D; Xing A; Shen H; Ji C; Zheng C; Zhu J; Zhu J; Huang H; He H; Zhu B; Fang J
    Environ Pollut; 2021 Jan; 268(Pt B):115941. PubMed ID: 33162211
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow.
    Fuchslueger L; Bahn M; Fritz K; Hasibeder R; Richter A
    New Phytol; 2014 Feb; 201(3):916-927. PubMed ID: 24171922
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool.
    Fan X; Gao D; Zhao C; Wang C; Qu Y; Zhang J; Bai E
    ISME J; 2021 Aug; 15(8):2248-2263. PubMed ID: 33619354
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits.
    Craig ME; Geyer KM; Beidler KV; Brzostek ER; Frey SD; Stuart Grandy A; Liang C; Phillips RP
    Nat Commun; 2022 Mar; 13(1):1229. PubMed ID: 35264580
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Revaluating forest drought experiments according to future precipitation patterns, ecosystem carbon and decomposition rate responses: A meta-analysis.
    Jones AG; Clymans W; Palmer DJ; Crockatt ME
    Ambio; 2022 May; 51(5):1227-1238. PubMed ID: 34697767
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert.
    Clark JS; Campbell JH; Grizzle H; Acosta-Martìnez V; Zak JC
    Microb Ecol; 2009 Feb; 57(2):248-60. PubMed ID: 19067031
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Contrasting Biogeographic Patterns of Bacterial and Archaeal Diversity in the Top- and Subsoils of Temperate Grasslands.
    Liu N; Hu H; Ma W; Deng Y; Liu Y; Hao B; Zhang X; Dimitrov D; Feng X; Wang Z
    mSystems; 2019 Oct; 4(5):. PubMed ID: 31575667
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Half substitution of mineral N with fish protein hydrolysate enhancing microbial residue C and N storage and climate benefits under high straw residue return.
    Wang JL; Liu XY; Jiang PK; Yu QR; Xu QF
    J Environ Manage; 2024 Sep; 370():122488. PubMed ID: 39270338
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Depth-driven responses of microbial residual carbon to nitrogen addition approaches in a tropical forest: Canopy addition versus understory addition.
    Kuang L; Mou Z; Li Y; Lu X; Kuang Y; Wang J; Wang F; Cai X; Zhang W; Fu S; Hui D; Lambers H; Sardans J; Peñuelas J; Ren H; Liu Z
    J Environ Manage; 2023 Aug; 340():118009. PubMed ID: 37105101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.