BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37831286)

  • 1. Construction of a xylose metabolic pathway in Trichosporonoides oedocephalis ATCC 16958 for the production of erythritol and xylitol.
    Deng Z; Mu Y; Chen Z; Yan L; Ju X; Li L
    Biotechnol Lett; 2023 Dec; 45(11-12):1529-1539. PubMed ID: 37831286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of erythritol production by Trichosporonoides oedocephalis ATCC 16958 through regulating key enzyme activity and the NADPH/NADP ratio with metal ion supplementation.
    Li L; Kang P; Ju X; Chen J; Zou H; Hu C; Yan L
    Prep Biochem Biotechnol; 2018 Mar; 48(3):257-263. PubMed ID: 29355459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol.
    Li L; Yang T; Guo W; Ju X; Hu C; Tang B; Fu J; Gu J; Zhang H
    J Microbiol Biotechnol; 2016 Apr; 26(4):700-9. PubMed ID: 26718472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.
    Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J
    Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
    Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis.
    Oh DK; Kim SY
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):419-25. PubMed ID: 9830092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii.
    Arruda PV; Felipe MG
    Curr Microbiol; 2009 Mar; 58(3):274-8. PubMed ID: 19034573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of xylitol dehydrogenase (XYL2) on xylose fermentation by engineered Candida glycerinogenes.
    Zong H; Zhang C; Zhuge B; Lu X; Fang H; Sun J
    Biotechnol Appl Biochem; 2017 Jul; 64(4):590-599. PubMed ID: 27245615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of the yeast Trichosporonoides oedocephalis.
    Li L; Yang T; Hu C; Ju X; Hu C; Tang B
    Antonie Van Leeuwenhoek; 2016 Feb; 109(2):305-9. PubMed ID: 26671413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol.
    Leonel LV; Sene L; da Cunha MAA; Dalanhol KCF; de Almeida Felipe MDG
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2153-2163. PubMed ID: 32627063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway.
    Wang R; Li L; Zhang B; Gao X; Wang D; Hong J
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):841-54. PubMed ID: 23657586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.