These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37831447)
1. Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning. Montesano G; Lazaridis G; Ometto G; Crabb DP; Garway-Heath DF Transl Vis Sci Technol; 2023 Oct; 12(10):10. PubMed ID: 37831447 [TBL] [Abstract][Full Text] [Related]
2. A Practical Framework for the Integration of Structural Data Into Perimetric Examinations. Evans JC; Ometto G; Crabb DP; Montesano G Transl Vis Sci Technol; 2024 Jun; 13(6):19. PubMed ID: 38916881 [TBL] [Abstract][Full Text] [Related]
3. Improving Visual Field Examination of the Macula Using Structural Information. Montesano G; Rossetti LM; Allegrini D; Romano MR; Crabb DP Transl Vis Sci Technol; 2018 Nov; 7(6):36. PubMed ID: 30619656 [TBL] [Abstract][Full Text] [Related]
4. Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma. Turpin A; Jankovic D; McKendrick AM Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1627-34. PubMed ID: 17389493 [TBL] [Abstract][Full Text] [Related]
5. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans. Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142 [TBL] [Abstract][Full Text] [Related]
6. Comparison Between 24-2 ZEST and 24-2 ZEST FAST Strategies in Glaucoma and Ocular Hypertension Using a Fundus Perimeter. Romano D; Oddone F; Montesano G; Fogagnolo P; Colizzi B; Tanga L; Giammaria S; Rui C; Rossetti LM J Glaucoma; 2024 Mar; 33(3):162-167. PubMed ID: 38245812 [TBL] [Abstract][Full Text] [Related]
7. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. Turpin A; McKendrick AM; Johnson CA; Vingrys AJ Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4787-95. PubMed ID: 14578400 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Central Visual Field Measures From Macular OCT Volume Scans With Deep Learning. Mohammadzadeh V; Vepa A; Li C; Wu S; Chew L; Mahmoudinezhad G; Maltz E; Sahin S; Mylavarapu A; Edalati K; Martinyan J; Yalzadeh D; Scalzo F; Caprioli J; Nouri-Mahdavi K Transl Vis Sci Technol; 2023 Nov; 12(11):5. PubMed ID: 37917086 [TBL] [Abstract][Full Text] [Related]
9. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma. Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Structure-Function Correlations in Glaucoma with Customized Spatial Mapping. Ballae Ganeshrao S; Turpin A; Denniss J; McKendrick AM Ophthalmology; 2015 Aug; 122(8):1695-705. PubMed ID: 26077579 [TBL] [Abstract][Full Text] [Related]
11. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry. McKendrick AM; Turpin A Optom Vis Sci; 2005 Nov; 82(11):981-7. PubMed ID: 16317375 [TBL] [Abstract][Full Text] [Related]
12. A perimetric test procedure that uses structural information. Ganeshrao SB; McKendrick AM; Denniss J; Turpin A Optom Vis Sci; 2015 Jan; 92(1):70-82. PubMed ID: 25415282 [TBL] [Abstract][Full Text] [Related]
13. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Medeiros FA; Jammal AA; Thompson AC Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810 [TBL] [Abstract][Full Text] [Related]
14. Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners. Lazaridis G; Montesano G; Afgeh SS; Mohamed-Noriega J; Ourselin S; Lorenzi M; Garway-Heath DF Am J Ophthalmol; 2022 Jun; 238():52-65. PubMed ID: 34998718 [TBL] [Abstract][Full Text] [Related]
15. Towards Patient-Tailored Perimetry: Automated Perimetry Can Be Improved by Seeding Procedures With Patient-Specific Structural Information. Denniss J; McKendrick AM; Turpin A Transl Vis Sci Technol; 2013 May; 2(4):3. PubMed ID: 24049720 [TBL] [Abstract][Full Text] [Related]
16. Customized, automated stimulus location choice for assessment of visual field defects. Chong LX; McKendrick AM; Ganeshrao SB; Turpin A Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3265-74. PubMed ID: 24781947 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. Christopher M; Bowd C; Belghith A; Goldbaum MH; Weinreb RN; Fazio MA; Girkin CA; Liebmann JM; Zangwill LM Ophthalmology; 2020 Mar; 127(3):346-356. PubMed ID: 31718841 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements. Kamalipour A; Moghimi S; Khosravi P; Jazayeri MS; Nishida T; Mahmoudinezhad G; Li EH; Christopher M; Liebmann JM; Fazio MA; Girkin CA; Zangwill L; Weinreb RN Am J Ophthalmol; 2023 Feb; 246():163-173. PubMed ID: 36328198 [TBL] [Abstract][Full Text] [Related]
19. Structure-Function Relationship between Flicker-Defined Form Perimetry and Spectral-Domain Optical Coherence Tomography in Glaucoma Suspects. Reznicek L; Muth D; Vogel M; Hirneiß C Curr Eye Res; 2017 Mar; 42(3):418-423. PubMed ID: 27419859 [TBL] [Abstract][Full Text] [Related]
20. Comparison of 10-2 and 24-2C Test Grids for Identifying Central Visual Field Defects in Glaucoma and Suspect Patients. Phu J; Kalloniatis M Ophthalmology; 2021 Oct; 128(10):1405-1416. PubMed ID: 33722636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]