BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37831789)

  • 1. Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing.
    Duncan D; Räth C
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-informed reservoir computing for efficient time-series prediction.
    Köster F; Patel D; Wikner A; Jaurigue L; Lüdge K
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37408150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.
    Doan NAK; Polifke W; Magri L
    Proc Math Phys Eng Sci; 2021 Sep; 477(2253):20210135. PubMed ID: 35153579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.
    Pathak J; Hunt B; Girvan M; Lu Z; Ott E
    Phys Rev Lett; 2018 Jan; 120(2):024102. PubMed ID: 29376715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid proper orthogonal decomposition and next generation reservoir computing approach for high-dimensional chaotic prediction: Application to flow-induced vibration of tube bundles.
    Liu T; Zhao X; Sun P; Zhou J
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38490185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components.
    Wikner A; Pathak J; Hunt BR; Szunyogh I; Girvan M; Ott E
    Chaos; 2021 May; 31(5):053114. PubMed ID: 34240950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-free forecasting of partially observable spatiotemporally chaotic systems.
    Gupta V; Li LKB; Chen S; Wan M
    Neural Netw; 2023 Mar; 160():297-305. PubMed ID: 36716509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems.
    Chepuri R; Amzalag D; Antonsen TM; Girvan M
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38838103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
    Vlachas PR; Byeon W; Wan ZY; Sapsis TP; Koumoutsakos P
    Proc Math Phys Eng Sci; 2018 May; 474(2213):20170844. PubMed ID: 29887750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Existence of reservoir with finite-dimensional output for universal reservoir computing.
    Sugiura S; Ariizumi R; Asai T; Azuma SI
    Sci Rep; 2024 Apr; 14(1):8448. PubMed ID: 38600157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing.
    Ma H; Prosperino D; Haluszczynski A; Räth C
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37307160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.