These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37831873)

  • 1. Broadband linear frequency modulation signal compression based on a spectral Talbot effect.
    Xie X; Li J; Xu K; Capmany J; Dai Y
    Opt Lett; 2023 Oct; 48(20):5383-5386. PubMed ID: 37831873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of overlapping linear frequency modulated (LFM) signals using the fractional fourier transform.
    Cowell DM; Freear S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2324-33. PubMed ID: 20889420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic generation of programmable coherent linear frequency modulated signal and its application in X-band radar system.
    Cheng R; Wei W; Xie W; Dong Y
    Opt Express; 2019 Dec; 27(26):37469-37480. PubMed ID: 31878526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution.
    Swiercz E; Janczak D; Konopko K
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation.
    Chen W; Zhu D; Xie C; Zhou T; Zhong X; Pan S
    Opt Express; 2018 Dec; 26(25):32491-32499. PubMed ID: 30645415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral recovery of broadband waveforms via cross-phase modulation based tunable Talbot amplifier.
    Li Z; Xie Q; Zhang Y; Zhang H; Shu C
    Opt Express; 2024 May; 32(10):17535-17550. PubMed ID: 38858935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiband LFM waveform generation and band-selection using stimulated Brillouin scattering.
    Dhawan R; Parida D; Parihar R; Jha M; Choudhary A
    Appl Opt; 2023 Sep; 62(25):6737-6745. PubMed ID: 37706806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Millimeter-wave joint radar and communication system based on photonic frequency-multiplying constant envelope LFM-OFDM.
    Bai W; Li P; Zou X; Zhou Z; Pan W; Yan L; Luo B; Fang X; Jiang L; Chen L
    Opt Express; 2022 Jul; 30(15):26407-26425. PubMed ID: 36236833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.
    Zhang F; Guo Q; Pan S
    Sci Rep; 2017 Oct; 7(1):13848. PubMed ID: 29062093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonics-Based Multifunction System for Radar Signal Transmit-Receive Processing and Frequency Measurement.
    Yang D; Zhang Y; Yang F; Yang M; Cao Y
    Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OFDM-NOMA combined with LFM signal for W-band communication and radar detection simultaneously.
    Song R; He J
    Opt Lett; 2022 Jun; 47(11):2931-2934. PubMed ID: 35648967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wideband reconfigurable signal generation based on recirculating frequency-shifting using an optoelectronic loop.
    Yin Z; Zhang X; Liu C; Zeng H; Li W
    Opt Express; 2021 Aug; 29(18):28643-28651. PubMed ID: 34614990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instantaneous bandwidth expansion of photonic sampling analog-to-digital conversion for linear frequency modulation waveforms based on up-sampling and fractional Fourier transform signal processing.
    Li Z; Tian H; Lyu W; Zhang Y; Gao F; Xu Z; Zhang L; Zhang Z; Zhang S; Li H; Liu Y
    Opt Express; 2023 Aug; 31(17):28134-28144. PubMed ID: 37710875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter optimization of pulse compression in ultrasound imaging systems with coded excitation.
    Behar V; Adam D
    Ultrasonics; 2004 Aug; 42(10):1101-9. PubMed ID: 15234172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waveform engineering analysis of photoacoustic radar chirp parameters for spatial resolution and SNR optimization.
    Sun Z; Baddour N; Mandelis A
    Photoacoustics; 2019 Jun; 14():49-66. PubMed ID: 31193128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonics-based multi-band linearly frequency modulated signal generation and anti-chromatic dispersion transmission.
    Zhang K; Zhao S; Wen A; Zhai W; Lin T; Li X; Wang G; Li H
    Opt Express; 2020 Mar; 28(6):8350-8362. PubMed ID: 32225462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression.
    Arif M; Ali MA; Shaikh MM; Freear S
    Ultrasound Med Biol; 2017 Aug; 43(8):1690-1702. PubMed ID: 28483580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic super-resolution millimeter-wave joint radar-communication system using self-coherent detection.
    Bai W; Li P; Zou X; Zhong N; Pan W; Yan L; Luo B
    Opt Lett; 2023 Feb; 48(3):608-611. PubMed ID: 36723544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-modulated continuous-wave laser ranging using low-duty-cycle signals for the applications of real-time super-resolved ranging.
    Xu Z; Sun X; Yu F; Chen K; Pan S
    Opt Lett; 2021 Jan; 46(2):258-261. PubMed ID: 33449002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of time-delay measurement accuracy of an insufficient stimulated Brillouin scattering based pulse compression system via lock-in detection.
    Yang Y; Li X; Chen J; Zou W
    Opt Express; 2020 Dec; 28(26):39544-39551. PubMed ID: 33379500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.