These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37832297)

  • 21. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.
    Shao Y; Pan Z; Rong C; Wang Y; Zhu H; Zhang Y; Yu K
    Environ Pollut; 2018 Oct; 241():9-18. PubMed ID: 29793109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water.
    Wang J; Zhang M; Hu S; Xian Q; Chen H; Gong T
    Environ Sci Technol; 2022 Dec; 56(24):17763-17775. PubMed ID: 36475631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.
    Dong H; Qiang Z; Hu J; Qu J
    Water Res; 2017 Sep; 121():178-185. PubMed ID: 28527979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Halonitromethanes formation in wastewater treatment plant effluents.
    Song H; Addison JW; Hu J; Karanfil T
    Chemosphere; 2010 Mar; 79(2):174-9. PubMed ID: 20153501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.
    Hong H; Xiong Y; Ruan M; Liao F; Lin H; Liang Y
    Sci Total Environ; 2013 Feb; 444():196-204. PubMed ID: 23271145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection.
    Barber LB; Hladik ML; Vajda AM; Fitzgerald KC; Douville C
    Sci Total Environ; 2015 Oct; 529():264-74. PubMed ID: 26025637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and speciation of chlorinated, brominated, and iodinated haloacetamides in chloraminated iodide-containing waters.
    Fang C; Krasner SW; Chu W; Ding S; Zhao T; Gao N
    Water Res; 2018 Nov; 145():103-112. PubMed ID: 30121431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of cupric ions on the formation of chlorinated disinfection byproducts from nitrophenol compounds during UV/post-chlorination.
    Wang T; Deng L; Tan C; Hu J; Singh RP
    J Hazard Mater; 2024 Jun; 471():134362. PubMed ID: 38643576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation.
    Li GQ; Huo ZY; Wu QY; Lu Y; Hu HY
    Sci Total Environ; 2018 Oct; 639():1233-1240. PubMed ID: 29929290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DBP-FP change of biofilm in drinking water distribution system induced by sequential UV and chlorine disinfection: Effect of UV dose and influencing mechanism.
    Zhang T; Li K; Liu X
    Environ Pollut; 2023 Dec; 338():122716. PubMed ID: 37832779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal and spatial variations of disinfection by-products in South Taihu's drinking water, Zhejiang Province, China.
    Liu T; Zhang M; Wen D; Fu Y; Yao J; Shao G; Peng Z
    J Water Health; 2023 Oct; 21(10):1503-1517. PubMed ID: 37902205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water.
    Gougoutsa C; Christophoridis C; Zacharis CK; Fytianos K
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16620-30. PubMed ID: 27178297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis.
    Chen Y; Jafari I; Zhong Y; Chee MJ; Hu J
    Sci Total Environ; 2022 Nov; 846():157454. PubMed ID: 35868393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity.
    Yu Y; Reckhow DA
    Water Res; 2020 Jan; 168():115131. PubMed ID: 31622913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using UV/H
    Ding S; Wang F; Chu W; Fang C; Pan Y; Lu S; Gao N
    Water Res; 2019 Dec; 167():115096. PubMed ID: 31577966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination.
    Wu Z; Tang Y; Yuan X; Qiang Z
    Chemosphere; 2021 Apr; 268():129340. PubMed ID: 33360939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.