These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37832563)

  • 21. Exciton manipulation in rippled transition metal dichalcogenides.
    Long C; Dai Y; Li J; Jin H
    Nanoscale; 2020 Nov; 12(41):21124-21130. PubMed ID: 33078184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures.
    Gao S; Yang L; Spataru CD
    Nano Lett; 2017 Dec; 17(12):7809-7813. PubMed ID: 29164895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides.
    Suzuki Y; Watanabe K
    Phys Chem Chem Phys; 2020 Feb; 22(5):2908-2916. PubMed ID: 31950126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and tuning the electronic, mechanical and optical properties of a recently synthesized 2D polyaramid: a first principles study.
    Singh M; Kaur SP; Chakraborty B
    Phys Chem Chem Phys; 2024 Aug; 26(32):21874-21887. PubMed ID: 39105423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The van der Waals interaction and absorption and electron circular dichroism spectra of two-dimensional bilayer stacked structures.
    Xu C; Ding Y; Wang S; Cao S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123182. PubMed ID: 37517268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A first-principles Quantum Monte Carlo study of two-dimensional (2D) GaSe.
    Wines D; Saritas K; Ataca C
    J Chem Phys; 2020 Oct; 153(15):154704. PubMed ID: 33092365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The electronic and optical properties of III-V binary 2D semiconductors: how to achieve high precision from accurate many-body methods.
    Kolos M; Karlický F
    Phys Chem Chem Phys; 2022 Nov; 24(44):27459-27466. PubMed ID: 36341928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer electronic coupling on demand in a 2D magnetic semiconductor.
    Wilson NP; Lee K; Cenker J; Xie K; Dismukes AH; Telford EJ; Fonseca J; Sivakumar S; Dean C; Cao T; Roy X; Xu X; Zhu X
    Nat Mater; 2021 Dec; 20(12):1657-1662. PubMed ID: 34312534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-principles study on the electronic and optical properties of Bi
    Ahmad H; Rauf A; Ahmad A; Ulhaq A; Muhammad S
    RSC Adv; 2021 Sep; 11(51):32330-32338. PubMed ID: 35495534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation.
    Ruan J; Li Z; Ong CS; Louie SG
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2307611120. PubMed ID: 37490531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unveiling excitons in two-dimensional
    Guassi MR; Besse R; Piotrowski MJ; C Rêgo CR; Guedes-Sobrinho D; da Rosa AL; Cavalheiro Dias A
    Sci Rep; 2024 May; 14(1):11710. PubMed ID: 38778075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.
    Sanders N; Bayerl D; Shi G; Mengle KA; Kioupakis E
    Nano Lett; 2017 Dec; 17(12):7345-7349. PubMed ID: 29068214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning MoSO monolayer properties for optoelectronic and spintronic applications: effect of external strain, vacancies and doping.
    Nguyen DK; Guerrero-Sanchez J; Van On V; Rivas-Silva JF; Ponce-Pérez R; Cocoletzi GH; Hoat DM
    RSC Adv; 2021 Oct; 11(56):35614-35623. PubMed ID: 35493147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic and Excitonic Properties of MSi
    Woźniak T; Umm-E-Hani ; Faria Junior PE; Ramzan MS; Kuc AB
    Small; 2023 May; 19(19):e2206444. PubMed ID: 36772899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical Properties of Layered Hybrid Organic-Inorganic Halide Perovskites: A Tight-Binding GW-BSE Study.
    Cho Y; Berkelbach TC
    J Phys Chem Lett; 2019 Oct; 10(20):6189-6196. PubMed ID: 31560556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study.
    Espinosa-García WF; Pérez-Walton S; Osorio-Guillén JM; Moyses Araujo C
    J Phys Condens Matter; 2018 Jan; 30(3):035502. PubMed ID: 29182517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I
    Muhammad Z; Liu P; Ahmad R; Jalali Asadabadi S; Franchini C; Ahmad I
    Phys Chem Chem Phys; 2020 Jun; 22(21):11943-11955. PubMed ID: 32412023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quasiparticle and Optical Properties of Carrier-Doped Monolayer MoTe
    Champagne A; Haber JB; Pokawanvit S; Qiu DY; Biswas S; Atwater HA; da Jornada FH; Neaton JB
    Nano Lett; 2023 May; 23(10):4274-4281. PubMed ID: 37159934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.