These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37832688)
1. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Li G; Liu Z; Zhang J; Han H; Shu Z Sci Total Environ; 2024 Jan; 906():167718. PubMed ID: 37832688 [TBL] [Abstract][Full Text] [Related]
2. Forecasting water quality variable using deep learning and weighted averaging ensemble models. Zamani MG; Nikoo MR; Jahanshahi S; Barzegar R; Meydani A Environ Sci Pollut Res Int; 2023 Dec; 30(59):124316-124340. PubMed ID: 37996598 [TBL] [Abstract][Full Text] [Related]
3. Combining physical-based model and machine learning to forecast chlorophyll-a concentration in freshwater lakes. Chen C; Chen Q; Yao S; He M; Zhang J; Li G; Lin Y Sci Total Environ; 2024 Jan; 907():168097. PubMed ID: 37879485 [TBL] [Abstract][Full Text] [Related]
4. A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Di Nunno F; Zhu S; Ptak M; Sojka M; Granata F Sci Total Environ; 2023 Sep; 890():164323. PubMed ID: 37216992 [TBL] [Abstract][Full Text] [Related]
5. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning. Jin W; Dong S; Yu C; Luo Q Comput Biol Med; 2022 Jul; 146():105560. PubMed ID: 35551008 [TBL] [Abstract][Full Text] [Related]
6. One to twelve-month-ahead forecasting of MODIS-derived Qinghai Lake area, using neuro-fuzzy system hybridized by firefly optimization. Aghelpour P; Bahrami-Pichaghchi H; Varshavian V; Norooz-Valashedi R Environ Sci Pollut Res Int; 2024 Mar; 31(15):22900-22916. PubMed ID: 38418789 [TBL] [Abstract][Full Text] [Related]
7. Attribution of hydrological droughts in large river-connected lakes: Insights from an explainable machine learning model. Xue C; Zhang Q; Jia Y; Tang H; Zhang H Sci Total Environ; 2024 Nov; 952():175999. PubMed ID: 39233078 [TBL] [Abstract][Full Text] [Related]
8. Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network. Yu JW; Kim JS; Li X; Jong YC; Kim KH; Ryang GI Environ Pollut; 2022 Jun; 303():119136. PubMed ID: 35283198 [TBL] [Abstract][Full Text] [Related]
9. An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network. Singla P; Duhan M; Saroha S Earth Sci Inform; 2022; 15(1):291-306. PubMed ID: 34804244 [TBL] [Abstract][Full Text] [Related]
10. Exploring a multi-output temporal convolutional network driven encoder-decoder framework for ammonia nitrogen forecasting. Sheng S; Lin K; Zhou Y; Chen H; Luo Y; Guo S; Xu CY J Environ Manage; 2023 Sep; 342():118232. PubMed ID: 37270980 [TBL] [Abstract][Full Text] [Related]
11. Research on runoff process vectorization and integration of deep learning algorithms for flood forecasting. Liu C; Li W; Hu C; Xie T; Jiang Y; Li R; Soomro SE; Xu Y J Environ Manage; 2024 Jun; 362():121260. PubMed ID: 38833924 [TBL] [Abstract][Full Text] [Related]
12. Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China. Yao Z; Wang Z; Huang J; Xu N; Cui X; Wu T Sci Total Environ; 2024 Nov; 951():175407. PubMed ID: 39127213 [TBL] [Abstract][Full Text] [Related]
13. Uncertainty and sensitivity analysis of deep learning models for diurnal temperature range (DTR) forecasting over five Indian cities. Sankalp S; Sahoo BB; Sahoo SN Environ Monit Assess; 2023 Jan; 195(2):291. PubMed ID: 36633692 [TBL] [Abstract][Full Text] [Related]
14. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia. Yihdego Y; Webb J Environ Monit Assess; 2016 May; 188(5):308. PubMed ID: 27108121 [TBL] [Abstract][Full Text] [Related]
15. Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir. Yang B; Xiao T; Wang L; Huang W Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214220 [TBL] [Abstract][Full Text] [Related]
16. Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios. Song YH; Chung ES; Shahid S Sci Total Environ; 2022 Sep; 838(Pt 3):156162. PubMed ID: 35640757 [TBL] [Abstract][Full Text] [Related]
17. Machine learning models development for accurate multi-months ahead drought forecasting: Case study of the Great Lakes, North America. Hameed MM; Razali SFM; Mohtar WHMW; Rahman NA; Yaseen ZM PLoS One; 2023; 18(10):e0290891. PubMed ID: 37906556 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related]
19. Electricity price forecast based on the STL-TCN-NBEATS model. Zhang B; Song C; Jiang X; Li Y Heliyon; 2023 Jan; 9(1):e13029. PubMed ID: 36820190 [TBL] [Abstract][Full Text] [Related]
20. Dissolved Oxygen Concentration Prediction Model Based on WT-MIC-GRU-A Case Study in Dish-Shaped Lakes of Poyang Lake. Chi D; Huang Q; Liu L Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]