These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37833055)

  • 21. TLF: Triple learning framework for intracranial aneurysms segmentation from unreliable labeled CTA scans.
    Chai L; Xue S; Tang D; Liu J; Sun N; Liu X
    Comput Med Imaging Graph; 2024 Sep; 116():102421. PubMed ID: 39084165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of time-of-flight MR angiography and intracranial vessel wall MRI for luminal measurements relative to CT angiography.
    Sarikaya B; Colip C; Hwang WD; Hippe DS; Zhu C; Sun J; Balu N; Yuan C; Mossa-Basha M
    Br J Radiol; 2021 Feb; 94(1118):20200743. PubMed ID: 33180559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Giant Cerebral Aneurysms: Comparing CTA, MRA, and Digital Subtraction Angiography Assessments.
    Wang X; Benson JC; Jagadeesan B; McKinney A
    J Neuroimaging; 2020 May; 30(3):335-341. PubMed ID: 32324333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aneurysm growth evaluation and detection: a computer-assisted follow-up MRA analysis.
    Bizjak Ž; Špiclin Ž
    Sci Rep; 2024 Aug; 14(1):19609. PubMed ID: 39179696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A system to detect cerebral aneurysms in multimodality angiographic data sets.
    Hentschke CM; Beuing O; Paukisch H; Scherlach C; Skalej M; Tönnies KD
    Med Phys; 2014 Sep; 41(9):091904. PubMed ID: 25186391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms.
    Vach M; Wolf L; Weiss D; Ivan VL; Hofmann BB; Himmelspach L; Caspers J; Rubbert C
    Sci Rep; 2024 Aug; 14(1):18749. PubMed ID: 39138338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning for automated cerebral aneurysm detection on computed tomography images.
    Dai X; Huang L; Qian Y; Xia S; Chong W; Liu J; Di Ieva A; Hou X; Ou C
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):715-723. PubMed ID: 32056126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study.
    Adams WM; Laitt RD; Jackson A
    AJNR Am J Neuroradiol; 2000 Oct; 21(9):1618-28. PubMed ID: 11039340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography.
    Romijn M; Gratama van Andel HA; van Walderveen MA; Sprengers ME; van Rijn JC; van Rooij WJ; Venema HW; Grimbergen CA; den Heeten GJ; Majoie CB
    AJNR Am J Neuroradiol; 2008 Jan; 29(1):134-9. PubMed ID: 17928381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study.
    Hu B; Shi Z; Lu L; Miao Z; Wang H; Zhou Z; Zhang F; Wang R; Luo X; Xu F; Li S; Fang X; Wang X; Yan G; Lv F; Zhang M; Sun Q; Cui G; Liu Y; Zhang S; Pan C; Hou Z; Liang H; Pan Y; Chen X; Li X; Zhou F; Schoepf UJ; Varga-Szemes A; Garrison Moore W; Yu Y; Hu C; Zhang LJ;
    Lancet Digit Health; 2024 Apr; 6(4):e261-e271. PubMed ID: 38519154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Perspectives in Imaging Modalities for the Assessment of Unruptured Intracranial Aneurysms: A Comparative Analysis and Review.
    Turan N; Heider RA; Roy AK; Miller BA; Mullins ME; Barrow DL; Grossberg J; Pradilla G
    World Neurosurg; 2018 May; 113():280-292. PubMed ID: 29360591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noninvasive imaging after stent-assisted coiling of intracranial aneurysms: comparison of 3-T magnetic resonance imaging and 64-row multidetector computed tomography--a pilot study.
    Kovács A; Möhlenbruch M; Hadizadeh DR; Seifert M; Greschus S; Clusmann H; Willinek WA; Flacke S; Urbach H
    J Comput Assist Tomogr; 2011; 35(5):573-82. PubMed ID: 21926852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multislice CT angiography in the selection of patients with ruptured intracranial aneurysms suitable for clipping or coiling.
    Westerlaan HE; Gravendeel J; Fiore D; Metzemaekers JD; Groen RJ; Mooij JJ; Oudkerk M
    Neuroradiology; 2007 Dec; 49(12):997-1007. PubMed ID: 17891387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of 1.5 T and 3 T magnetic resonance angiography for detecting cerebral aneurysms using deep learning-based computer-assisted detection software.
    Tajima T; Akai H; Yasaka K; Kunimatsu A; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2023 Oct; 65(10):1473-1482. PubMed ID: 37646791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.
    Faron A; Sichtermann T; Teichert N; Luetkens JA; Keulers A; Nikoubashman O; Freiherr J; Mpotsaris A; Wiesmann M
    Clin Neuroradiol; 2020 Sep; 30(3):591-598. PubMed ID: 31227844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An automatic detection method of cerebral aneurysms in time-of-flight magnetic resonance angiography images based on attention 3D U-Net.
    Chen G; Meng C; Ruoyu D; Dongdong W; Liqin Y; Wei X; Yuxin L; Daoying G
    Comput Methods Programs Biomed; 2022 Oct; 225():106998. PubMed ID: 35939977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How reliable is CT angiography in the etiologic workup of intracranial hemorrhage? A single surgeon's experience.
    Fluss R; Rahme R
    Clin Neurol Neurosurg; 2020 Jan; 188():105602. PubMed ID: 31760253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.