These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37833236)

  • 1. Kuratsuki bacteria and sake making.
    Nishida H
    Biosci Biotechnol Biochem; 2024 Feb; 88(3):249-253. PubMed ID: 37833236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of kuratsuki Kocuria on sake's taste varies depending on the sake yeast strain used in sake brewing.
    Yazaki A; Nishida H
    Arch Microbiol; 2023 Jul; 205(8):290. PubMed ID: 37468657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of kuratsuki Kocuria on sake brewing in different koji conditions.
    Yazaki A; Nishida H
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36931891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of
    Kanamoto E; Terashima K; Shiraki Y; Nishida H
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae.
    Ohashi M; Nasuno R; Watanabe D; Takagi H
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):1039-1045. PubMed ID: 30963326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient Signaling via the TORC1-Greatwall-PP2A
    Watanabe D; Kajihara T; Sugimoto Y; Takagi K; Mizuno M; Zhou Y; Chen J; Takeda K; Tatebe H; Shiozaki K; Nakazawa N; Izawa S; Akao T; Shimoi H; Maeda T; Takagi H
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341081
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR
    Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H
    J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and Bacterial Components in Sake and Sake Production Process.
    Akaike M; Miyagawa H; Kimura Y; Terasaki M; Kusaba Y; Kitagaki H; Nishida H
    Curr Microbiol; 2020 Apr; 77(4):632-637. PubMed ID: 31250090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bio3 mutation in sake yeast leads to changes in organic acid profiles and ester levels but not ethanol production.
    Takase S; Tomonaga K; Tanaka J; Moriya C; Kiyoshi K; Akao T; Watanabe K; Kadokura T; Nakayama S
    J Biosci Bioeng; 2023 Jul; 136(1):44-50. PubMed ID: 37183145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polygenic Analysis in Absence of Major Effector
    Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing.
    Takao Y; Takahashi T; Yamada T; Goshima T; Isogai A; Sueno K; Fujii T; Akao T
    J Biosci Bioeng; 2018 Nov; 126(5):617-623. PubMed ID: 29884321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of yeast chromosome II aneuploidy on malate production in sake brewing.
    Hotta N; Kotaka A; Matsumura K; Sasano Y; Hata Y; Harada T; Sugiyama M; Harashima S; Ishida H
    J Biosci Bioeng; 2024 Jan; 137(1):24-30. PubMed ID: 37989703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Japanese sake making using wild yeasts isolated from natural environments.
    Nakagawa T; Yoshimura A; Sawai Y; Hisamatsu K; Akao T; Masaki K
    Biosci Biotechnol Biochem; 2024 Feb; 88(3):231-236. PubMed ID: 38364793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical analysis of yeast protein interaction network during the sake brewing process.
    Mirzarezaee M; Sadeghi M; Araabi BN
    J Microbiol; 2011 Dec; 49(6):965-73. PubMed ID: 22203560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in
    Isogai S; Nishimura A; Kotaka A; Murakami N; Hotta N; Ishida H; Takagi H
    Appl Environ Microbiol; 2022 Mar; 88(5):e0213021. PubMed ID: 35020456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making.
    Meng X; Wu Q; Wang L; Wang D; Chen L; Xu Y
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1601-8. PubMed ID: 26323612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of sake yeast strains from Ariake Sea tidal flats and evaluation of their brewing characteristics.
    Baba S; Sawada K; Orita R; Kimura K; Goto M; Kobayashi G
    J Gen Appl Microbiol; 2022 Jun; 68(1):30-37. PubMed ID: 35431296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.
    Kitagaki H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):145-53. PubMed ID: 19476438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.
    Watanabe D; Nogami S; Ohya Y; Kanno Y; Zhou Y; Akao T; Shimoi H
    J Biosci Bioeng; 2011 Dec; 112(6):577-82. PubMed ID: 21906996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.