These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37833267)

  • 1. High-Q lasing via all-dielectric Bloch-surface-wave platform.
    Lee YC; Ho YL; Lin BW; Chen MH; Xing D; Daiguji H; Delaunay JJ
    Nat Commun; 2023 Oct; 14(1):6458. PubMed ID: 37833267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths.
    Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Zero-Index Slabs on Bloch Surface Wave Platform for Long-Range Directional Couplers and Optical Logic Gates.
    Deng CZ; Ho YL; Yamahara H; Tabata H; Delaunay JJ
    ACS Nano; 2022 Feb; 16(2):2224-2232. PubMed ID: 35119823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional polymer grating and prism on Bloch surface waves platform.
    Yu L; Barakat E; Di Francesco J; Herzig HP
    Opt Express; 2015 Dec; 23(25):31640-7. PubMed ID: 26698957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave.
    Feng F; Wei SB; Li L; Min CJ; Yuan XC; Somekh M
    Opt Express; 2019 Sep; 27(20):27536-27545. PubMed ID: 31684519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Hole-Array Grating-Coupling-Based Excitation of Bloch Surface Waves for Highly Sensitive Biosensing.
    Ge D; Shi J; Rezk A; Ma C; Zhang L; Yang P; Zhu S
    Nanoscale Res Lett; 2019 Oct; 14(1):319. PubMed ID: 31599355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bloch surface waves at the telecommunication wavelength with lithium niobate as the top layer for integrated optics.
    Kovalevich T; Belharet D; Robert L; Ulliac G; Kim MS; Herzig HP; Grosjean T; Bernal MP
    Appl Opt; 2019 Mar; 58(7):1757-1762. PubMed ID: 30874213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Bloch wave excitation platform based on few-layer photonic crystal deposited on D-shaped optical fiber.
    Gonzalez-Valencia E; Villar ID; Torres P
    Sci Rep; 2021 May; 11(1):11266. PubMed ID: 34050199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-assisted random lasing from a single-mode fiber tip.
    Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse photonic design of functional elements that focus Bloch surface waves.
    Augenstein Y; Vetter A; Lahijani BV; Herzig HP; Rockstuhl C; Kim MS
    Light Sci Appl; 2018; 7():104. PubMed ID: 30564310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode Interference of Bloch Surface Electromagnetic Waves.
    Safronov KR; Gulkin DN; Antropov IM; Abrashitova KA; Bessonov VO; Fedyanin AA
    ACS Nano; 2020 Aug; 14(8):10428-10437. PubMed ID: 32806066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bloch surface waves confined in one dimension with a single polymeric nanofibre.
    Wang R; Xia H; Zhang D; Chen J; Zhu L; Wang Y; Yang E; Zang T; Wen X; Zou G; Wang P; Ming H; Badugu R; Lakowicz JR
    Nat Commun; 2017 Feb; 8():14330. PubMed ID: 28155871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided Bloch surface waves on ultrathin polymeric ridges.
    Descrovi E; Sfez T; Quaglio M; Brunazzo D; Dominici L; Michelotti F; Herzig HP; Martin OJ; Giorgis F
    Nano Lett; 2010 Jun; 10(6):2087-91. PubMed ID: 20446750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization controlled directional propagation of Bloch surface wave.
    Kovalevich T; Boyer P; Suarez M; Salut R; Kim MS; Herzig HP; Bernal MP; Grosjean T
    Opt Express; 2017 Mar; 25(5):5710-5715. PubMed ID: 28380827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range Bloch surface waves in photonic crystal ridges.
    Perani T; Liscidini M
    Opt Lett; 2020 Dec; 45(23):6534-6537. PubMed ID: 33258855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-mode surface plasmon distributed feedback lasers.
    Karami Keshmarzi E; Tait RN; Berini P
    Nanoscale; 2018 Mar; 10(13):5914-5922. PubMed ID: 29537008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorophore Interactions with the Surface Modes and Internal Modes of a Photonic Crystal.
    Badugu R; Blair S; Descrovi E; Lakowicz JR
    Opt Mater (Amst); 2024 Jan; 147():. PubMed ID: 38283740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorophore Coupling to Internal Modes of Bragg Gratings.
    Badugu R; Mao J; Zhang D; Descrovi E; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(41):22743-22752. PubMed ID: 34306293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.
    Ren D; Ahtapodov L; Nilsen JS; Yang J; Gustafsson A; Huh J; Conibeer GJ; van Helvoort ATJ; Fimland BO; Weman H
    Nano Lett; 2018 Apr; 18(4):2304-2310. PubMed ID: 29502425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.