These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37833285)

  • 1. Spatiotemporal-based automated inundation mapping of Ramsar wetlands using Google Earth Engine.
    Goyal MK; Rakkasagi S; Shaga S; Zhang TC; Surampalli RY; Dubey S
    Sci Rep; 2023 Oct; 13(1):17324. PubMed ID: 37833285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Nebraska playa wetland inundation status during 1985-2015 using Landsat data and Google Earth Engine.
    Tang Z; Li Y; Gu Y; Jiang W; Xue Y; Hu Q; LaGrange T; Bishop A; Drahota J; Li R
    Environ Monit Assess; 2016 Dec; 188(12):654. PubMed ID: 27826819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal heterogeneity of inundation pattern of floodplain lake wetlands and impact on wetland vegetation.
    Huang A; Liu X; Peng W; Dong F; Han Z; Du F; Ma B; Wang W
    Sci Total Environ; 2023 Dec; 905():167831. PubMed ID: 37839489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.
    Wua Q; Lane CR; Li X; Zhao K; Zhou Y; Clinton N; DeVries B; Golden HE; Lang MW
    Remote Sens Environ; 2019 Jul; 228():1-13. PubMed ID: 33776151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolating Anthropogenic Wetland Loss by Concurrently Tracking Inundation and Land Cover Disturbance across the Mid-Atlantic Region, U.S.
    Vanderhoof MK; Christensen J; Beal YG; DeVries B; Lang MW; Hwang N; Mazzarella C; Jones JW
    Remote Sens (Basel); 2020 May; 12(9):1464. PubMed ID: 34327008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-hydrology as a driver for tidal restoration: Observations from a Ramsar wetland in eastern Australia.
    Glamore W; Rayner D; Ruprecht J; Sadat-Noori M; Khojasteh D
    PLoS One; 2021; 16(8):e0254701. PubMed ID: 34351914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine.
    Wang X; Xiao X; Zou Z; Hou L; Qin Y; Dong J; Doughty RB; Chen B; Zhang X; Chen Y; Ma J; Zhao B; Li B
    ISPRS J Photogramm Remote Sens; 2020 May; 163():312-326. PubMed ID: 32405155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear programming the Ramsar convention's criterion IV (case study: Shadegan Wetland, West Asia).
    Rafei A; Danehkar A; Goodarzi MS
    Environ Monit Assess; 2023 Sep; 195(10):1194. PubMed ID: 37698676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of precipitation and groundwater extraction on freshwater wetland inundation.
    Balerna JA; Kramer AM; Landry SM; Rains MC; Lewis DB
    J Environ Manage; 2023 Jul; 337():117690. PubMed ID: 36933535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining human disturbances and inundation dynamics in China's marsh wetlands by using time series remote sensing data.
    Lu D; Chang J
    Sci Total Environ; 2023 Mar; 863():160961. PubMed ID: 36529399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations.
    Mu S; Li B; Yao J; Yang G; Wan R; Xu X
    Sci Total Environ; 2020 Jul; 725():138096. PubMed ID: 32302824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote sensing and GIS for wetland inventory, mapping and change analysis.
    Rebelo LM; Finlayson CM; Nagabhatla N
    J Environ Manage; 2009 May; 90(7):2144-53. PubMed ID: 18367311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022.
    Zhang X; Liu L; Zhao T; Wang J; Liu W; Chen X
    Sci Data; 2024 Mar; 11(1):310. PubMed ID: 38521796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetland ecological index and assessment of spatial-temporal changes of wetland ecological integrity.
    Zhang Z; Fan Y; Jiao Z
    Sci Total Environ; 2023 Mar; 862():160741. PubMed ID: 36526212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution effects on ox-bow lake mapping and inundation consistency analysis in moribund deltaic flood plain of India.
    Pal S; Ghosh R
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94485-94500. PubMed ID: 37535280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of population, land cover change, and climatic variability on wetland resource degradation in a Ramsar listed Ghodaghodi Lake Complex, Nepal.
    Lamsal P; Atreya K; Ghosh MK; Pant KP
    Environ Monit Assess; 2019 Jun; 191(7):415. PubMed ID: 31172363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near real-time flood inundation and hazard mapping of Baitarani River Basin using Google Earth Engine and SAR imagery.
    Atchyuth BAS; Swain R; Das P
    Environ Monit Assess; 2023 Oct; 195(11):1331. PubMed ID: 37848573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat ETM images and field survey data.
    MacAlister C; Mahaxay M
    J Environ Manage; 2009 May; 90(7):2130-7. PubMed ID: 18467019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Aboveground Biomass of Four Typical Vegetation Types in the Poyang Lake Wetlands Based on Random Forest Modelling and Landsat Images.
    Wan R; Wang P; Wang X; Yao X; Dai X
    Front Plant Sci; 2019; 10():1281. PubMed ID: 31681377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica.
    Barchiesi S; Alonso A; Pazmiño-Hernandez M; Serrano-Sandí JM; Muñoz-Carpena R; Angelini C
    Ecol Appl; 2022 Mar; 32(2):e2493. PubMed ID: 34773674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.