These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37833286)

  • 1. Metal-free electrochemical dihydroxylation of unactivated alkenes.
    Liu M; Feng T; Wang Y; Kou G; Wang Q; Wang Q; Qiu Y
    Nat Commun; 2023 Oct; 14(1):6467. PubMed ID: 37833286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator.
    Wang Y; Zhao Z; Pan D; Wang S; Jia K; Ma D; Yang G; Xue XS; Qiu Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202210201. PubMed ID: 36018273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition Metal-Free 1,2-Carboboration of Unactivated Alkenes.
    Cheng Y; Mück-Lichtenfeld C; Studer A
    J Am Chem Soc; 2018 May; 140(20):6221-6225. PubMed ID: 29741375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical oxidative oxysulfenylation and aminosulfenylation of alkenes with hydrogen evolution.
    Yuan Y; Chen Y; Tang S; Huang Z; Lei A
    Sci Adv; 2018 Aug; 4(8):eaat5312. PubMed ID: 30083610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Roles of tert-Butyl Nitrite in the Transition Metal- and External Oxidant-Free Trifluoromethyloximation of Alkenes.
    Wu Y; Zhang Y; Yang Z; Jiao J; Zheng X; Feng W; Zhang M; Cheng H; Tang L
    ChemSusChem; 2019 Sep; 12(17):3960-3966. PubMed ID: 31359635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroreduction of unactivated alkenes using water as hydrogen source.
    Wang Y; Wang Q; Wu L; Jia K; Wang M; Qiu Y
    Nat Commun; 2024 Mar; 15(1):2780. PubMed ID: 38555370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arylcarboxylation of unactivated alkenes with CO
    Zhang W; Chen Z; Jiang YX; Liao LL; Wang W; Ye JH; Yu DG
    Nat Commun; 2023 Jun; 14(1):3529. PubMed ID: 37316537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-free polychloromethyl radical-initiated cyclization of unactivated
    Shan Y; Yang Z; Yu JT; Pan C
    Org Biomol Chem; 2022 Jul; 20(26):5259-5263. PubMed ID: 35735246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Synthesis of β-Iodoesters by 1,2-Iodoesterization of Unactivated Alkenes with Carboxylic Acids and Tetrabutylammonium Iodide.
    Tan YF; Zhao YN; Yang D; Lv JF; Guan Z; He YH
    J Org Chem; 2023 Apr; 88(8):5161-5171. PubMed ID: 36975167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni-Catalyzed Reductive 1,2-Cross-Dialkylation of Unactivated Alkenes with Two Alkyl Bromides.
    Zhang JX; Shu W
    Org Lett; 2022 Jun; 24(21):3844-3849. PubMed ID: 35594195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free visible-light-enabled vicinal trifluoromethyl dithiolation of unactivated alkenes.
    Li X; Zhang Q; Zhang W; Ma J; Wang Y; Pan Y
    Beilstein J Org Chem; 2021; 17():551-557. PubMed ID: 33727978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxidation and 1,2-dihydroxylation of alkenes by a nonheme iron model system - DFT supports the mechanism proposed by experiment.
    Comba P; Rajaraman G
    Inorg Chem; 2008 Jan; 47(1):78-93. PubMed ID: 18072762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Rearrangement for Remote Functionalizations of Unactivated Alkenes.
    Wang D; Yuan B; Xu J; Ackermann L
    Chemistry; 2023 May; 29(30):e202300600. PubMed ID: 36825548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF
    Yuan JW; Zhang MY; Liu Y; Hu WY; Yang LR; Xiao YM; Diao XQ; Zhang SR; Mao J
    Org Biomol Chem; 2022 Dec; 20(48):9722-9733. PubMed ID: 36440712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Do Phosphinates React with Unactivated Alkenes Under Organic Photocatalyzed Conditions? Substrate Scope and Mechanistic Insights.
    Fausti G; Morlet-Savary F; Lalevée J; Gaumont AC; Lakhdar S
    Chemistry; 2017 Feb; 23(9):2144-2148. PubMed ID: 27862425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progression of Hydroamination Catalyzed by Late Transition-Metal Complexes from Activated to Unactivated Alkenes.
    Ma S; Hartwig JF
    Acc Chem Res; 2023 Jun; 56(12):1565-1577. PubMed ID: 37272995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of azaheterocycles via Pd-catalyzed migratory cycloannulation reaction of unactivated alkenes.
    Wang JP; Song S; Wu Y; Wang P
    Nat Commun; 2022 Aug; 13(1):5059. PubMed ID: 36030256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO
    Song L; Fu DM; Chen L; Jiang YX; Ye JH; Zhu L; Lan Y; Fu Q; Yu DG
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):21121-21128. PubMed ID: 32750191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst.
    Majhi J; Matsuo B; Oh H; Kim S; Sharique M; Molander GA
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317190. PubMed ID: 38109703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium-Catalyzed Hydroamination of Unactivated Terminal Alkenes with Stoichiometric Amounts of Alkene and an Ammonia Surrogate by Sequential Oxidation and Reduction.
    Ma S; Hill CK; Olen CL; Hartwig JF
    J Am Chem Soc; 2021 Jan; 143(1):359-368. PubMed ID: 33356181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.