These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37833313)
1. Prediction of gestational diabetes mellitus using machine learning from birth cohort data of the Japan Environment and Children's Study. Watanabe M; Eguchi A; Sakurai K; Yamamoto M; Mori C; Sci Rep; 2023 Oct; 13(1):17419. PubMed ID: 37833313 [TBL] [Abstract][Full Text] [Related]
2. An Innovative Artificial Intelligence-Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study. Shen J; Chen J; Zheng Z; Zheng J; Liu Z; Song J; Wong SY; Wang X; Huang M; Fang PH; Jiang B; Tsang W; He Z; Liu T; Akinwunmi B; Wang CC; Zhang CJP; Huang J; Ming WK J Med Internet Res; 2020 Sep; 22(9):e21573. PubMed ID: 32930674 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study. Ye Y; Xiong Y; Zhou Q; Wu J; Li X; Xiao X J Diabetes Res; 2020; 2020():4168340. PubMed ID: 32626780 [TBL] [Abstract][Full Text] [Related]
4. Predicting recurrent gestational diabetes mellitus using artificial intelligence models: a retrospective cohort study. Chen M; Xu W; Guo Y; Yan J Arch Gynecol Obstet; 2024 Sep; 310(3):1621-1630. PubMed ID: 39080058 [TBL] [Abstract][Full Text] [Related]
5. Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning. Wu YT; Zhang CJ; Mol BW; Kawai A; Li C; Chen L; Wang Y; Sheng JZ; Fan JX; Shi Y; Huang HF J Clin Endocrinol Metab; 2021 Mar; 106(3):e1191-e1205. PubMed ID: 33351102 [TBL] [Abstract][Full Text] [Related]
6. Prediction of gestational diabetes mellitus at the first trimester: machine-learning algorithms. Li YX; Liu YC; Wang M; Huang YL Arch Gynecol Obstet; 2024 Jun; 309(6):2557-2566. PubMed ID: 37477677 [TBL] [Abstract][Full Text] [Related]
7. Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus. Kumar M; Ang LT; Png H; Ng M; Tan K; Loy SL; Tan KH; Chan JKY; Godfrey KM; Chan SY; Chong YS; Eriksson JG; Feng M; Karnani N Int J Environ Res Public Health; 2022 Jun; 19(11):. PubMed ID: 35682375 [TBL] [Abstract][Full Text] [Related]
8. Association between whole blood metallic elements concentrations and gestational diabetes mellitus in Japanese women: The Japan environment and Children's study. Tatsuta N; Iwai-Shimada M; Nakayama SF; Iwama N; Metoki H; Arima T; Sakurai K; Anai A; Asato K; Kuriyama S; Sugawara J; Suzuki K; Yaegashi N; Kamijima M; Nakai K; Environ Res; 2022 Sep; 212(Pt B):113231. PubMed ID: 35405127 [TBL] [Abstract][Full Text] [Related]
9. Association between social capital and the prevalence of gestational diabetes mellitus: An interim report of the Japan Environment and Children's Study. Mizuno S; Nishigori H; Sugiyama T; Takahashi F; Iwama N; Watanabe Z; Sakurai K; Ishikuro M; Obara T; Tatsuta N; Nishijima I; Fujiwara I; Arima T; Kuriyama S; Metoki H; Nakai K; Inadera H; Yaegashi N; Diabetes Res Clin Pract; 2016 Oct; 120():132-41. PubMed ID: 27544908 [TBL] [Abstract][Full Text] [Related]
10. MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women. Gallardo-Rincón H; Ríos-Blancas MJ; Ortega-Montiel J; Montoya A; Martinez-Juarez LA; Lomelín-Gascón J; Saucedo-Martínez R; Mújica-Rosales R; Galicia-Hernández V; Morales-Juárez L; Illescas-Correa LM; Ruiz-Cabrera IL; Díaz-Martínez DA; Magos-Vázquez FJ; Ávila EOV; Benitez-Herrera AE; Reyes-Gómez D; Carmona-Ramos MC; Hernández-González L; Romero-Islas O; Muñoz ER; Tapia-Conyer R Sci Rep; 2023 Apr; 13(1):6992. PubMed ID: 37117235 [TBL] [Abstract][Full Text] [Related]
11. Impact of sleep duration during pregnancy on the risk of gestational diabetes in the Japan environmental and Children's study (JECS). Myoga M; Tsuji M; Tanaka R; Shibata E; Askew DJ; Aiko Y; Senju A; Kawamoto T; Hachisuga T; Araki S; Kusuhara K; Morokuma S; Sanefuji M; BMC Pregnancy Childbirth; 2019 Dec; 19(1):483. PubMed ID: 31818260 [TBL] [Abstract][Full Text] [Related]
12. Late-pregnancy dysglycemia in obese pregnancies after negative testing for gestational diabetes and risk of future childhood overweight: An interim analysis from a longitudinal mother-child cohort study. Gomes D; von Kries R; Delius M; Mansmann U; Nast M; Stubert M; Langhammer L; Haas NA; Netz H; Obermeier V; Kuhle S; Holdt LM; Teupser D; Hasbargen U; Roscher AA; Ensenauer R PLoS Med; 2018 Oct; 15(10):e1002681. PubMed ID: 30372451 [TBL] [Abstract][Full Text] [Related]
13. Preconception Dietary Inflammatory Index and Risk of Gestational Diabetes Mellitus Based on Maternal Body Mass Index: Findings from a Japanese Birth Cohort Study. Kyozuka H; Murata T; Isogami H; Imaizumi K; Fukuda T; Yamaguchi A; Yasuda S; Sato A; Ogata Y; Hosoya M; Yasumura S; Hashimoto K; Nishigori H; Fujimori K; The Japan Environment And Children's Study Jecs Group Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235751 [TBL] [Abstract][Full Text] [Related]
14. Maternal birth weight as an indicator of early and late gestational diabetes mellitus: The Japan Environment and Children's Study. Tagami K; Iwama N; Hamada H; Tomita H; Kudo R; Kumagai N; Wang H; Izumi S; Watanabe Z; Ishikuro M; Obara T; Tatsuta N; Metoki H; Ota C; Sugiyama T; Kuriyama S; Arima T; Yaegashi N; Saito M; J Diabetes Investig; 2024 Jun; 15(6):751-761. PubMed ID: 38391358 [TBL] [Abstract][Full Text] [Related]
15. An early model to predict the risk of gestational diabetes mellitus in the absence of blood examination indexes: application in primary health care centres. Wang J; Lv B; Chen X; Pan Y; Chen K; Zhang Y; Li Q; Wei L; Liu Y BMC Pregnancy Childbirth; 2021 Dec; 21(1):814. PubMed ID: 34879850 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Gestational Diabetes Mellitus under Cascade and Ensemble Learning Algorithm. Zhang J; Wang F Comput Intell Neurosci; 2022; 2022():3212738. PubMed ID: 35875747 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of risk prediction models for large for gestational age infants using logistic regression and two machine learning algorithms. Wang N; Guo H; Jing Y; Zhang Y; Sun B; Pan X; Chen H; Xu J; Wang M; Chen X; Song L; Cui W J Diabetes; 2023 Apr; 15(4):338-348. PubMed ID: 36890429 [TBL] [Abstract][Full Text] [Related]
18. Association between pre-pregnancy body mass index and gestational weight gain and perinatal outcomes in pregnant women diagnosed with gestational diabetes mellitus: The Japan Environment and Children's Study. Saito Y; Kobayashi S; Ikeda-Araki A; Ito S; Miyashita C; Kimura T; Hirata T; Tamakoshi A; Mayama M; Noshiro K; Nakagawa K; Umazume T; Chiba K; Kawaguchi S; Morikawa M; Cho K; Watari H; Ito Y; Saijo Y; Kishi R; J Diabetes Investig; 2022 May; 13(5):889-899. PubMed ID: 34845867 [TBL] [Abstract][Full Text] [Related]
19. Association between maternal gestational diabetes mellitus and high-sensitivity C-reactive protein levels in 8-year-old children: The Yamanashi Adjunct Study of the Japan Environment and Children's Study (JECS). Sekine T; Tsuchiya K; Uchinuma H; Horiuchi S; Kushima M; Otawa S; Yokomichi H; Miyake K; Akiyama Y; Ooka T; Kojima R; Shinohara R; Yamagata Z; J Diabetes Investig; 2022 Aug; 13(8):1444-1447. PubMed ID: 35348295 [TBL] [Abstract][Full Text] [Related]
20. Association of glycated hemoglobin at an early stage of pregnancy with the risk of gestational diabetes mellitus among non-diabetic women in Japan: The Japan Environment and Children's Study. Sekine T; Tsuchiya K; Uchinuma H; Horiuchi S; Kushima M; Otawa S; Yokomichi H; Miyake K; Akiyama Y; Ooka T; Kojima R; Shinohara R; Hirata S; Yamagata Z; J Diabetes Investig; 2022 Apr; 13(4):687-695. PubMed ID: 34679259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]