These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37833380)

  • 21. The importance of data splitting in combined NO
    Kamińska JA; Kajewska-Szkudlarek J
    Sci Total Environ; 2023 Apr; 868():161744. PubMed ID: 36690101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the energy-saving potential of using thermochromic coatings on opaque and transparent elements of educational buildings.
    Nematollahi AH; Fathi S; Mahravan A
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18157-18170. PubMed ID: 36757595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paradoxical home temperatures during cold weather: a proof-of-concept study.
    Ryti NRI; Korpelainen A; Seppänen O; Jaakkola JJK
    Int J Biometeorol; 2020 Dec; 64(12):2065-2076. PubMed ID: 32852609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural network controller for hydronic heating systems of solar buildings.
    Argiriou AA; Bellas-Velidis I; Kummert M; André P
    Neural Netw; 2004 Apr; 17(3):427-40. PubMed ID: 15037359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Location and Insulation Material on Energy Performance of Residential Buildings as per Saudi Building Code (SBC) 601/602 in Saudi Arabia.
    Alyami SH; Alqahtany A; Ashraf N; Osman A; Aldossary NA; Almutlaqa A; Al-Maziad F; Alshammari MS; Al-Gehlani WAG
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building Heating and Cooling Load Prediction Using Ensemble Machine Learning Model.
    Chaganti R; Rustam F; Daghriri T; Díez IT; Mazón JLV; Rodríguez CL; Ashraf I
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population-weighted degree-days: The global shift between heating and cooling.
    Kennard H; Oreszczyn T; Mistry M; Hamilton I
    Energy Build; 2022 Sep; 271():None. PubMed ID: 37719455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large uncertainties in trends of energy demand for heating and cooling under climate change.
    Deroubaix A; Labuhn I; Camredon M; Gaubert B; Monerie PA; Popp M; Ramarohetra J; Ruprich-Robert Y; Silvers LG; Siour G
    Nat Commun; 2021 Aug; 12(1):5197. PubMed ID: 34465790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of long-term changes in air temperature on renewable energy in Poland.
    Canales FA; Jadwiszczak P; Jurasz J; Wdowikowski M; Ciapała B; Kaźmierczak B
    Sci Total Environ; 2020 Aug; 729():138965. PubMed ID: 32387775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of local climate zones to the thermal environment and energy demand.
    Yang R; Yang J; Wang L; Xiao X; Xia J
    Front Public Health; 2022; 10():992050. PubMed ID: 36016886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations.
    Arhami M; Kamali N; Rajabi MM
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impacts of global warming on residential heating and cooling degree-days in the United States.
    Petri Y; Caldeira K
    Sci Rep; 2015 Aug; 5():12427. PubMed ID: 26238673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: a combined experimental and neural network modeling study.
    Liu Z; Cheng K; Li H; Cao G; Wu D; Shi Y
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3510-3517. PubMed ID: 29159437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal performance of energy-efficient buildings for sustainable development.
    Vijayan DS; Sivasuriyan A; Patchamuthu P; Jayaseelan R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51130-51142. PubMed ID: 34845641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parametric analysis of a zero-energy building aiming for a reduction of CO
    Mahdavi Adeli M; Farahat S; Sarhaddi F
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):34121-34134. PubMed ID: 32557041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of different Trombe wall solutions on the reduction of energy load and sustainable development in an eco-resort residential building in Binalood region with a cold and dry climate.
    Sady H; Rashidi S; Rafee R
    Environ Sci Pollut Res Int; 2023 Jun; 30(26):68417-68434. PubMed ID: 37126165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation and modeling of the residential infiltration of fine particulate matter in Beijing, China.
    Xu C; Li N; Yang Y; Li Y; Liu Z; Wang Q; Zheng T; Civitarese A; Xu D
    J Air Waste Manag Assoc; 2017 Jun; 67(6):694-701. PubMed ID: 28010179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Efficient Building Designing: Heating and Cooling Load Prediction via Multi-Output Model.
    Sajjad M; Khan SU; Khan N; Haq IU; Ullah A; Lee MY; Baik SW
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing a hybrid time-series artificial intelligence model to forecast energy use in buildings.
    Ngo NT; Pham AD; Truong TTH; Truong NS; Huynh NT
    Sci Rep; 2022 Sep; 12(1):15775. PubMed ID: 36131108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and comparative analysis of ANN and SVR-based models with conventional regression models for predicting spray drift.
    Moges G; McDonnell K; Delele MA; Ali AN; Fanta SW
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21927-21944. PubMed ID: 36280637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.