BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37833630)

  • 1. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    BMC Genomics; 2023 Oct; 24(1):614. PubMed ID: 37833630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Quantitatively Differential Chromosomal Compartmentalization Changes and Their Biological Significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    Res Sq; 2023 Apr; ():. PubMed ID: 37162846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPIN reveals genome-wide landscape of nuclear compartmentalization.
    Wang Y; Zhang Y; Zhang R; van Schaik T; Zhang L; Sasaki T; Peric-Hupkes D; Chen Y; Gilbert DM; van Steensel B; Belmont AS; Ma J
    Genome Biol; 2021 Jan; 22(1):36. PubMed ID: 33446254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting chromosomal compartments directly from the nucleotide sequence with DNA-DDA.
    Lainscsek X; Taher L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37264486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data.
    Ye C; Paccanaro A; Gerstein M; Yan KK
    BMC Bioinformatics; 2020 May; 21(1):222. PubMed ID: 32471347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle.
    Xie WJ; Meng L; Liu S; Zhang L; Cai X; Gao YQ
    Sci Rep; 2017 Jun; 7(1):2818. PubMed ID: 28588240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contributions of nuclear lamina association and genome compartmentalization to gene regulation.
    Das P; San Martin R; McCord RP
    Nucleus; 2023 Dec; 14(1):2197693. PubMed ID: 37017584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K9 methylation promotes formation of genome compartments in
    Bian Q; Anderson EC; Yang Q; Meyer BJ
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11459-11470. PubMed ID: 32385148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CscoreTool-M infers 3D sub-compartment probabilities within cell population.
    Zheng X; Tran JR; Zheng Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37166448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery.
    Siegenfeld AP; Roseman SA; Roh H; Lue NZ; Wagen CC; Zhou E; Johnstone SE; Aryee MJ; Liau BB
    Nat Commun; 2022 Jul; 13(1):4199. PubMed ID: 35859152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving comparative analyses of Hi-C data via contrastive self-supervised learning.
    Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages of using graph databases to explore chromatin conformation capture experiments.
    D'Agostino D; LiĆ² P; Aldinucci M; Merelli I
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):43. PubMed ID: 33902433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.