BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37833755)

  • 61. Systematic Analysis of Metabolic Bottlenecks in the Methylerythritol 4-Phosphate (MEP) Pathway of Zymomonas mobilis.
    Khana DB; Tatli M; Rivera Vazquez J; Weraduwage SM; Stern N; Hebert AS; Angelica Trujillo E; Stevenson DM; Coon JJ; Sharky TD; Amador-Noguez D
    mSystems; 2023 Apr; 8(2):e0009223. PubMed ID: 36995223
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses.
    Nouri H; Moghimi H; Marashi SA; Elahi E
    PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis.
    Martien JI; Trujillo EA; Jacobson TB; Tatli M; Hebert AS; Stevenson DM; Coon JJ; Amador-Noguez D
    mSystems; 2021 Dec; 6(6):e0098721. PubMed ID: 34783580
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4.
    Kerr AL; Jeon YJ; Svenson CJ; Rogers PL; Neilan BA
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):761-9. PubMed ID: 20957358
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell Aggregation and Aerobic Respiration Are Important for
    Jones-Burrage SE; Kremer TA; McKinlay JB
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877116
    [No Abstract]   [Full Text] [Related]  

  • 66. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis.
    Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y
    Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization and Application of the Sugar Transporter Zmo0293 from
    Zhang K; Zhang W; Qin M; Li Y; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982961
    [No Abstract]   [Full Text] [Related]  

  • 68. Phenotype microarray profiling of Zymomonas mobilis ZM4.
    Bochner B; Gomez V; Ziman M; Yang S; Brown SD
    Appl Biochem Biotechnol; 2010 May; 161(1-8):116-23. PubMed ID: 20012508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.
    Tan FR; Dai LC; Wu B; Qin H; Shui ZX; Wang JL; Zhu QL; Hu QC; Ruan ZY; He MX
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5363-71. PubMed ID: 25895089
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in
    Chang D; Yu Z; Ul Islam Z; French WT; Zhang Y; Zhang H
    Biotechnol Biofuels; 2018; 11():283. PubMed ID: 30356850
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment.
    Yi X; Gu H; Gao Q; Liu ZL; Bao J
    Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.
    Gu H; Zhang J; Bao J
    Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh).
    Dong HW; Fan LQ; Luo Z; Zhong JJ; Ryu DD; Bao J
    Biotechnol Bioeng; 2013 Sep; 110(9):2395-404. PubMed ID: 23475631
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4.
    Seo JS; Chong H; Park HS; Yoon KO; Jung C; Kim JJ; Hong JH; Kim H; Kim JH; Kil JI; Park CJ; Oh HM; Lee JS; Jin SJ; Um HW; Lee HJ; Oh SJ; Kim JY; Kang HL; Lee SY; Lee KJ; Kang HS
    Nat Biotechnol; 2005 Jan; 23(1):63-8. PubMed ID: 15592456
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Zymomonas mobilis as a model system for production of biofuels and biochemicals.
    Yang S; Fei Q; Zhang Y; Contreras LM; Utturkar SM; Brown SD; Himmel ME; Zhang M
    Microb Biotechnol; 2016 Nov; 9(6):699-717. PubMed ID: 27629544
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genome-Scale Transcription-Translation Mapping Reveals Features of Zymomonas mobilis Transcription Units and Promoters.
    Vera JM; Ghosh IN; Zhang Y; Hebert AS; Coon JJ; Landick R
    mSystems; 2020 Jul; 5(4):. PubMed ID: 32694125
    [No Abstract]   [Full Text] [Related]  

  • 78. Cold plasma pretreatment reinforces the lignocellulose-derived aldehyde inhibitors tolerance and bioethanol fermentability for Zymomonas mobilis.
    Yi X; Yang D; Xu X; Wang Y; Guo Y; Zhang M; Wang Y; He Y; Zhu J
    Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):102. PubMed ID: 37322470
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Finished Genome of Zymomonas mobilis subsp. mobilis Strain CP4, an Applied Ethanol Producer.
    Kouvelis VN; Teshima H; Bruce D; Detter C; Tapia R; Han C; Tampakopoulou VO; Goodwin L; Woyke T; Kyrpides NC; Typas MA; Pappas KM
    Genome Announc; 2014 Jan; 2(1):. PubMed ID: 24407627
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate.
    Todhanakasem T; Sangsutthiseree A; Areerat K; Young GM; Thanonkeo P
    N Biotechnol; 2014 Sep; 31(5):451-9. PubMed ID: 24930397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.