These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37833755)

  • 121. Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering.
    Hao Y; Wang Q; Li J; Yang S; Zheng Y; Peng W
    Open Biol; 2022 Jan; 12(1):210241. PubMed ID: 35016549
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Improving Mobilization of Foreign DNA into Zymomonas mobilis Strain ZM4 by Removal of Multiple Restriction Systems.
    Lal PB; Wells F; Myers KS; Banerjee R; Guss AM; Kiley PJ
    Appl Environ Microbiol; 2021 Sep; 87(19):e0080821. PubMed ID: 34288704
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Synthetic counter-selection markers and their application in genetic modification of Synechococcus elongatus UTEX2973.
    Chen L; Liu H; Wang L; Tan X; Yang S
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5077-5086. PubMed ID: 34106311
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Bacterial Differential Expression Analysis Methods.
    Utturkar S; Dassanayake A; Nagaraju S; Brown SD
    Methods Mol Biol; 2020; 2096():89-112. PubMed ID: 32720149
    [TBL] [Abstract][Full Text] [Related]  

  • 125.
    Liu Y; He X; Zhu P; Cheng M; Hong Q; Yan X
    Front Microbiol; 2020; 11():441. PubMed ID: 32296398
    [TBL] [Abstract][Full Text] [Related]  

  • 126. A Markerless Method for Genome Engineering in
    Lal PB; Wells FM; Lyu Y; Ghosh IN; Landick R; Kiley PJ
    Front Microbiol; 2019; 10():2216. PubMed ID: 31681183
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering.
    Zheng Y; Han J; Wang B; Hu X; Li R; Shen W; Ma X; Ma L; Yi L; Yang S; Peng W
    Nucleic Acids Res; 2019 Dec; 47(21):11461-11475. PubMed ID: 31647102
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
    Kim D; Paggi JM; Park C; Bennett C; Salzberg SL
    Nat Biotechnol; 2019 Aug; 37(8):907-915. PubMed ID: 31375807
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus.
    Schuster CF; Howard SA; Gründling A
    Microbiology (Reading); 2019 May; 165(5):572-584. PubMed ID: 30942689
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Aerobic catabolism and respiratory lactate bypass in Ndh-negative
    Strazdina I; Balodite E; Lasa Z; Rutkis R; Galinina N; Kalnenieks U
    Metab Eng Commun; 2018 Dec; 7():e00081. PubMed ID: 30591903
    [TBL] [Abstract][Full Text] [Related]  

  • 131. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis.
    Xia Y; Li K; Li J; Wang T; Gu L; Xun L
    Nucleic Acids Res; 2019 Feb; 47(3):e15. PubMed ID: 30462336
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Efficient Counterselection for Methylococcus capsulatus (Bath) by Using a Mutated
    Ishikawa M; Yokoe S; Kato S; Hori K
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266726
    [No Abstract]   [Full Text] [Related]  

  • 133. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis.
    Xia J; Liu CG; Zhao XQ; Xiao Y; Xia XX; Bai FW
    Biotechnol Bioeng; 2018 Nov; 115(11):2714-2725. PubMed ID: 30063083
    [TBL] [Abstract][Full Text] [Related]  

  • 134. pheS* as a counter-selectable marker for marker-free genetic manipulations in Bacillus anthracis.
    Wang YC; Yuan LS; Tao HX; Jiang W; Liu CJ
    J Microbiol Methods; 2018 Aug; 151():35-38. PubMed ID: 29859216
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Complete genome sequence and the expression pattern of plasmids of the model ethanologen
    Yang S; Vera JM; Grass J; Savvakis G; Moskvin OV; Yang Y; McIlwain SJ; Lyu Y; Zinonos I; Hebert AS; Coon JJ; Bates DM; Sato TK; Brown SD; Himmel ME; Zhang M; Landick R; Pappas KM; Zhang Y
    Biotechnol Biofuels; 2018; 11():125. PubMed ID: 29743953
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Advances and prospects in metabolic engineering of Zymomonas mobilis.
    Wang X; He Q; Yang Y; Wang J; Haning K; Hu Y; Wu B; He M; Zhang Y; Bao J; Contreras LM; Yang S
    Metab Eng; 2018 Nov; 50():57-73. PubMed ID: 29627506
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria.
    Xin Y; Guo T; Mu Y; Kong J
    Microb Cell Fact; 2017 Jul; 16(1):116. PubMed ID: 28679374
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Zymomonas mobilis as a model system for production of biofuels and biochemicals.
    Yang S; Fei Q; Zhang Y; Contreras LM; Utturkar SM; Brown SD; Himmel ME; Zhang M
    Microb Biotechnol; 2016 Nov; 9(6):699-717. PubMed ID: 27629544
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars.
    Yang S; Mohagheghi A; Franden MA; Chou YC; Chen X; Dowe N; Himmel ME; Zhang M
    Biotechnol Biofuels; 2016; 9(1):189. PubMed ID: 27594916
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Simple and Highly Efficient Transformation Method for Zymomonas mobilis: Electroporation.
    Okamoto T; Nakamura K
    Biosci Biotechnol Biochem; 1992 Jan; 56(5):833. PubMed ID: 27286223
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.