These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 37834133)
21. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Rupp F; Gittens RA; Scheideler L; Marmur A; Boyan BD; Schwartz Z; Geis-Gerstorfer J Acta Biomater; 2014 Jul; 10(7):2894-906. PubMed ID: 24590162 [TBL] [Abstract][Full Text] [Related]
22. Biological and Physicochemical Characteristics of 2 Different Hydrophilic Surfaces Created by Saline-Storage and Ultraviolet Treatment. Ghassemi A; Ishijima M; Hasegawa M; Mohammadzadeh Rezaei N; Nakhaei K; Sekiya T; Torii Y; Hirota M; Park W; Miley DD; Ogawa T Implant Dent; 2018 Aug; 27(4):405-414. PubMed ID: 29851661 [TBL] [Abstract][Full Text] [Related]
24. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. An N; Rausch-fan X; Wieland M; Matejka M; Andrukhov O; Schedle A Dent Mater; 2012 Dec; 28(12):1207-14. PubMed ID: 23083807 [TBL] [Abstract][Full Text] [Related]
25. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. D'Ercole S; Cellini L; Pilato S; Di Lodovico S; Iezzi G; Piattelli A; Petrini M J Mater Sci Mater Med; 2020 Sep; 31(10):84. PubMed ID: 32989624 [TBL] [Abstract][Full Text] [Related]
26. UV-photofunctionalization of a biomimetic coating for dental implants application. Dini C; Nagay BE; Cordeiro JM; da Cruz NC; Rangel EC; Ricomini-Filho AP; de Avila ED; Barão VAR Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110657. PubMed ID: 32204085 [TBL] [Abstract][Full Text] [Related]
27. Early osseointegration driven by the surface chemistry and wettability of dental implants. Sartoretto SC; Alves AT; Resende RF; Calasans-Maia J; Granjeiro JM; Calasans-Maia MD J Appl Oral Sci; 2015; 23(3):279-87. PubMed ID: 26221922 [TBL] [Abstract][Full Text] [Related]
28. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Ayobian-Markazi N; Karimi M; Safar-Hajhosseini A Lasers Med Sci; 2015 Feb; 30(2):561-6. PubMed ID: 23760881 [TBL] [Abstract][Full Text] [Related]
29. Effect of ultraviolet-mediated photofunctionalization for bone formation around medical titanium mesh. Hirota M; Ikeda T; Tabuchi M; Iwai T; Tohnai I; Ogawa T J Oral Maxillofac Surg; 2014 Sep; 72(9):1691-702. PubMed ID: 25109583 [TBL] [Abstract][Full Text] [Related]
30. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma. Jeong WS; Kwon JS; Lee JH; Uhm SH; Ha Choi E; Kim KM Biomed Mater; 2017 Jul; 12(4):045015. PubMed ID: 28746053 [TBL] [Abstract][Full Text] [Related]
31. Biomechanical and histomorphometric properties of four different mini-implant surfaces. Yadav S; Upadhyay M; Roberts WE Eur J Orthod; 2015 Dec; 37(6):627-35. PubMed ID: 25681126 [TBL] [Abstract][Full Text] [Related]
32. UV-Photofunctionalization of Titanium Promotes Mechanical Anchorage in A Rat Osteoporosis Model. Taniyama T; Saruta J; Mohammadzadeh Rezaei N; Nakhaei K; Ghassemi A; Hirota M; Okubo T; Ikeda T; Sugita Y; Hasegawa M; Ogawa T Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32059603 [TBL] [Abstract][Full Text] [Related]
33. Roughness and wettability of titanium implant surfaces modify the salivary pellicle composition. Martínez-Hernández M; Hannig M; García-Pérez VI; Olivares-Navarrete R; Fecher-Trost C; Almaguer-Flores A J Biomed Mater Res B Appl Biomater; 2021 Jul; 109(7):1017-1028. PubMed ID: 33252193 [TBL] [Abstract][Full Text] [Related]
34. Effect of Plasma Oxidation-Treated TiOx Film on Early Osseointegration. Jiang H; Zhang T; Zhou W; Lin Z; Liu Z Int J Oral Maxillofac Implants; 2018; 33(5):1011-1018. PubMed ID: 30231086 [TBL] [Abstract][Full Text] [Related]
35. Relationship between Roughness and Wettability of Nine Types of Implant Surfaces and Potential Interference of Surface Oxygen and Carbon: In Vitro Evaluation. Sampaio D; Klein GBG; Cortelli SC; Rosa JL; Vieira GS; de Lima Romeiro R Int J Oral Maxillofac Implants; 2024 Aug; ():1-28. PubMed ID: 39121371 [TBL] [Abstract][Full Text] [Related]
36. Osteoblastic Cell Behavior and Gene Expression Related to Bone Metabolism on Different Titanium Surfaces. Velasco-Ortega E; Fos-Parra I; Cabanillas-Balsera D; Gil J; Ortiz-García I; Giner M; Bocio-Núñez J; Montoya-García MJ; Jiménez-Guerra Á Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834936 [TBL] [Abstract][Full Text] [Related]
37. The Effect of Microcosm Biofilm Decontamination on Surface Topography, Chemistry, and Biocompatibility Dynamics of Implant Titanium Surfaces. Sousa V; Mardas N; Spratt D; Hassan IA; Walters NJ; Beltrán V; Donos N Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077428 [TBL] [Abstract][Full Text] [Related]
38. Multiscale porous titanium surfaces via a two-step etching process for improved mechanical and biological performance. Jang TS; Jung HD; Kim S; Moon BS; Baek J; Park C; Song J; Kim HE Biomed Mater; 2017 Mar; 12(2):025008. PubMed ID: 28296644 [TBL] [Abstract][Full Text] [Related]
39. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Rupp F; Scheideler L; Olshanska N; de Wild M; Wieland M; Geis-Gerstorfer J J Biomed Mater Res A; 2006 Feb; 76(2):323-34. PubMed ID: 16270344 [TBL] [Abstract][Full Text] [Related]
40. Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: an in vitro study. Li S; Ni J; Liu X; Zhang X; Yin S; Rong M; Guo Z; Zhou L J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1587-98. PubMed ID: 22707456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]