These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37834187)
21. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence. Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432 [TBL] [Abstract][Full Text] [Related]
23. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.). Bilska-Kos A; Solecka D; Dziewulska A; Ochodzki P; Jończyk M; Bilski H; Sowiński P Protoplasma; 2017 Mar; 254(2):713-724. PubMed ID: 27193139 [TBL] [Abstract][Full Text] [Related]
24. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis. van der Linde K; Doehlemann G Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294 [TBL] [Abstract][Full Text] [Related]
25. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. Lee K; Pan JJ; May G FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816 [TBL] [Abstract][Full Text] [Related]
26. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. Doehlemann G; van der Linde K; Assmann D; Schwammbach D; Hof A; Mohanty A; Jackson D; Kahmann R PLoS Pathog; 2009 Feb; 5(2):e1000290. PubMed ID: 19197359 [TBL] [Abstract][Full Text] [Related]
27. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
28. Assessment of Ustilago maydis as a fungal model for root infection studies. Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366 [TBL] [Abstract][Full Text] [Related]
29. Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. Saado I; Chia KS; Betz R; Alcântara A; Pettkó-Szandtner A; Navarrete F; D'Auria JC; Kolomiets MV; Melzer M; Feussner I; Djamei A Plant Cell; 2022 Jul; 34(7):2785-2805. PubMed ID: 35512341 [TBL] [Abstract][Full Text] [Related]
30. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]
31. Conservation of the Ustilago maydis effector See1 in related smuts. Redkar A; Villajuana-Bonequi M; Doehlemann G Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869 [TBL] [Abstract][Full Text] [Related]
32. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. Tanaka S; Gollin I; Rössel N; Kahmann R New Phytol; 2020 Jul; 227(1):185-199. PubMed ID: 32112567 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction. Jasso-Robles FI; Jiménez-Bremont JF; Becerra-Flora A; Juárez-Montiel M; Gonzalez ME; Pieckenstain FL; García de la Cruz RF; Rodríguez-Kessler M Plant Physiol Biochem; 2016 May; 102():115-24. PubMed ID: 26926794 [TBL] [Abstract][Full Text] [Related]
34. Pectins esterification in the apoplast of aluminum-treated pea root nodules. Sujkowska-Rybkowska M; Borucki W J Plant Physiol; 2015 Jul; 184():1-7. PubMed ID: 26151130 [TBL] [Abstract][Full Text] [Related]
35. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. Kretschmer M; Croll D; Kronstad JW Mol Plant Pathol; 2017 Dec; 18(9):1222-1237. PubMed ID: 27564861 [TBL] [Abstract][Full Text] [Related]
36. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
37. The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. Huang L; Ökmen B; Stolze SC; Kastl M; Khan M; Hilbig D; Nakagami H; Djamei A; Doehlemann G New Phytol; 2024 Feb; 241(4):1747-1762. PubMed ID: 38037456 [TBL] [Abstract][Full Text] [Related]
38. A transcriptional activator effector of Ustilago maydis regulates hyperplasia in maize during pathogen-induced tumor formation. Zuo W; Depotter JRL; Stolze SC; Nakagami H; Doehlemann G Nat Commun; 2023 Oct; 14(1):6722. PubMed ID: 37872143 [TBL] [Abstract][Full Text] [Related]
39. BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus. Solís MT; Berenguer E; Risueño MC; Testillano PS BMC Plant Biol; 2016 Aug; 16(1):176. PubMed ID: 27514748 [TBL] [Abstract][Full Text] [Related]
40. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification. Volpi C; Raiola A; Janni M; Gordon A; O'Sullivan DM; Favaron F; D'Ovidio R Plant Physiol Biochem; 2013 Dec; 73():294-301. PubMed ID: 24184449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]