These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 37834268)

  • 1. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics.
    Muslimov A; Tereshchenko V; Shevyrev D; Rogova A; Lepik K; Reshetnikov V; Ivanov R
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger.
    Devoldere J; Dewitte H; De Smedt SC; Remaut K
    Drug Discov Today; 2016 Jan; 21(1):11-25. PubMed ID: 26210957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy.
    Jolly KJ; Zhang F
    Adv Pharmacol; 2024; 100():247-288. PubMed ID: 39034054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleic Acid Sensing Machinery: Targeting Innate Immune System for Cancer Therapy.
    Iurescia S; Fioretti D; Rinaldi M
    Recent Pat Anticancer Drug Discov; 2018; 13(1):2-17. PubMed ID: 29086701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA-based therapies: Preclinical and clinical applications.
    Qureischi M; Mohr J; Arellano-Viera E; Knudsen SE; Vohidov F; Garitano-Trojaola A
    Int Rev Cell Mol Biol; 2022; 372():1-54. PubMed ID: 36064262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy.
    Mukalel AJ; Riley RS; Zhang R; Mitchell MJ
    Cancer Lett; 2019 Aug; 458():102-112. PubMed ID: 31100411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mRNA-Based Therapeutics - Advances and Perspectives.
    Sergeeva OV; Koteliansky VE; Zatsepin TS
    Biochemistry (Mosc); 2016 Jul; 81(7):709-22. PubMed ID: 27449617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity.
    Loomis KH; Lindsay KE; Zurla C; Bhosle SM; Vanover DA; Blanchard EL; Kirschman JL; Bellamkonda RV; Santangelo PJ
    Bioconjug Chem; 2018 Sep; 29(9):3072-3083. PubMed ID: 30067354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STING-mediated DNA sensing in cancer immunotherapy.
    Zhou X; Jiang Z
    Sci China Life Sci; 2017 Jun; 60(6):563-574. PubMed ID: 28639100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine.
    Kwon H; Kim M; Seo Y; Moon YS; Lee HJ; Lee K; Lee H
    Biomaterials; 2018 Feb; 156():172-193. PubMed ID: 29197748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives.
    Gómez-Aguado I; Rodríguez-Castejón J; Vicente-Pascual M; Rodríguez-Gascón A; Solinís MÁ; Del Pozo-Rodríguez A
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32093140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics.
    Kang DD; Li H; Dong Y
    Adv Drug Deliv Rev; 2023 Aug; 199():114961. PubMed ID: 37321375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
    Iurescia S; Fioretti D; Rinaldi M
    Front Immunol; 2018; 9():711. PubMed ID: 29686682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across.
    Minnaert AK; Vanluchene H; Verbeke R; Lentacker I; De Smedt SC; Raemdonck K; Sanders NN; Remaut K
    Adv Drug Deliv Rev; 2021 Sep; 176():113900. PubMed ID: 34324884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy.
    Long ZJ; Wang JD; Xu JQ; Lei XX; Liu Q
    Mol Ther; 2022 Mar; 30(3):1006-1017. PubMed ID: 35121107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rapid Development and Early Success of Covid 19 Vaccines Have Raised Hopes for Accelerating the Cancer Treatment Mechanism.
    Amanpour S
    Arch Razi Inst; 2021 Mar; 76(1):1-6. PubMed ID: 33818952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cGAS-STING Pathway: A Promising Immunotherapy Target.
    Ou L; Zhang A; Cheng Y; Chen Y
    Front Immunol; 2021; 12():795048. PubMed ID: 34956229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy.
    Zheng J; Mo J; Zhu T; Zhuo W; Yi Y; Hu S; Yin J; Zhang W; Zhou H; Liu Z
    Mol Cancer; 2020 Aug; 19(1):133. PubMed ID: 32854711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting LYPLAL1-mediated cGAS depalmitoylation enhances the response to anti-tumor immunotherapy.
    Fan Y; Gao Y; Nie L; Hou T; Dan W; Wang Z; Liu T; Wei Y; Wang Y; Liu B; Que T; Lei Y; Zeng J; Ma J; Wei W; Li L
    Mol Cell; 2023 Oct; 83(19):3520-3532.e7. PubMed ID: 37802025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA-based cancer therapeutics.
    Liu C; Shi Q; Huang X; Koo S; Kong N; Tao W
    Nat Rev Cancer; 2023 Aug; 23(8):526-543. PubMed ID: 37311817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.