BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 37834350)

  • 1. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes.
    Samaja M; Malavalli A; Vandegriff KD
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.
    Cabrales P; Friedman JM
    Antioxid Redox Signal; 2013 Jun; 18(17):2284-97. PubMed ID: 23249305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers.
    Simons M; Gretton S; Silkstone GGA; Rajagopal BS; Allen-Baume V; Syrett N; Shaik T; Leiva-Eriksson N; Ronda L; Mozzarelli A; Strader MB; Alayash AI; Reeder BJ; Cooper CE
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 29802155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of SNO-PEG-hemoglobin as a candidate for oxygen transporting material.
    Nakai K; Togashi H; Yasukohchi T; Sakuma I; Fujii S; Yoshioka M; Satoh H; Kitabatake A
    Int J Artif Organs; 2001 May; 24(5):322-8. PubMed ID: 11420882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.
    Taverne YJ; de Wijs-Meijler D; Te Lintel Hekkert M; Moon-Massat PF; Dubé GP; Duncker DJ; Merkus D
    J Appl Physiol (1985); 2017 May; 122(5):1227-1237. PubMed ID: 28183818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for vasoconstriction and decreased blood flow following intravenous administration of cell-free native hemoglobin solutions.
    Kim HW; Greenburg AG
    Adv Exp Med Biol; 2005; 566():397-401. PubMed ID: 16594178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of recombinant hemoglobin-based oxygen carriers.
    Varnado CL; Mollan TL; Birukou I; Smith BJ; Henderson DP; Olson JS
    Antioxid Redox Signal; 2013 Jun; 18(17):2314-28. PubMed ID: 23025383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Component Requirements and Erythrocyte Transfusion and Mortality Related to Hemoglobin Deficit in Phase III Trial of Hemoglobin-Based Oxygen Carrier: HBOC-201.
    Jahr JS; Williams JP
    Am J Ther; 2022 May-Jun 01; 29(3):e279-e286. PubMed ID: 35421008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed S-nitrosylated polymerized bovine hemoglobin species moderate hemodynamic effects in acutely hypoxic rats.
    Irwin D; Buehler PW; Alayash AI; Jia Y; Bonventura J; Foreman B; White M; Jacobs R; Piteo B; TissotvanPatot MC; Hamilton KL; Gotshall RW
    Am J Respir Cell Mol Biol; 2010 Feb; 42(2):200-9. PubMed ID: 19395680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical aspects of the reaction of hemoglobin and NO: implications for Hb-based blood substitutes.
    Patel RP
    Free Radic Biol Med; 2000 May; 28(10):1518-25. PubMed ID: 10927176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering.
    Benitez Cardenas AS; Samuel PP; Olson JS
    Shock; 2019 Oct; 52(1S Suppl 1):28-40. PubMed ID: 29112633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design.
    Silkstone GG; Silkstone RS; Wilson MT; Simons M; Bülow L; Kallberg K; Ratanasopa K; Ronda L; Mozzarelli A; Reeder BJ; Cooper CE
    Biochem J; 2016 Oct; 473(19):3371-83. PubMed ID: 27470146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin-based red blood cell substitutes and nitric oxide.
    Yu B; Bloch KD; Zapol WM
    Trends Cardiovasc Med; 2009 Apr; 19(3):103-7. PubMed ID: 19679268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier.
    Yu B; Shahid M; Egorina EM; Sovershaev MA; Raher MJ; Lei C; Wu MX; Bloch KD; Zapol WM
    Anesthesiology; 2010 Mar; 112(3):586-94. PubMed ID: 20179495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cell substitutes from hemoglobin--do we start all over again?
    Kluger R
    Curr Opin Chem Biol; 2010 Aug; 14(4):538-43. PubMed ID: 20392662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox concerns in the use of acellular hemoglobin-based therapeutic oxygen carriers: the role of plasma components.
    Harrington JP; Gonzalez Y; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2000 Nov; 28(6):477-92. PubMed ID: 11063090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemoglobin-based erythrocyte transfusion substitutes.
    Standl T
    Expert Opin Biol Ther; 2001 Sep; 1(5):831-43. PubMed ID: 11728218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin solutions and tissue oxygenation.
    Muir WW; Wellman ML
    J Vet Intern Med; 2003; 17(2):127-35. PubMed ID: 12683610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite reductase activity of hemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma hemoglobin produced during hemolysis.
    Minneci PC; Deans KJ; Shiva S; Zhi H; Banks SM; Kern S; Natanson C; Solomon SB; Gladwin MT
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H743-54. PubMed ID: 18552166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.