These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37834585)

  • 1. Advancing Concrete Mix Proportion through Hybrid Intelligence: A Multi-Objective Optimization Approach.
    Chen F; Xu W; Wen Q; Zhang G; Xu L; Fan D; Yu R
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm.
    Huang XY; Wu KY; Wang S; Lu T; Lu YF; Deng WC; Li HM
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metaheuristic Prediction of the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL Optimization Algorithm.
    Tosee SVR; Faridmehr I; Bedon C; Sadowski Ł; Aalimahmoody N; Nikoo M; Nowobilski T
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent Design of Building Materials: Development of an AI-Based Method for Cement-Slag Concrete Design.
    Zhu F; Wu X; Zhou M; Sabri MMS; Huang J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models.
    Han IJ; Yuan TF; Lee JY; Yoon YS; Kim JH
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete.
    Kekez S; Kubica J
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Breast Cancer Diagnosis Scheme With Intelligent Feature and Parameter Selections.
    Punitha S; Stephan T; Gandomi AH
    Comput Methods Programs Biomed; 2022 Feb; 214():106432. PubMed ID: 34844767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites.
    Kuppusamy Y; Jayaseelan R; Pandulu G; Sathish Kumar V; Murali G; Dixit S; Vatin NI
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization.
    Akbarzadeh MR; Ghafourian H; Anvari A; Pourhanasa R; Nehdi ML
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength.
    Barkhordari MS; Armaghani DJ; Sabri MMS; Ulrikh DV; Ahmad M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational AI Models for Investigating the Radiation Shielding Potential of High-Density Concrete.
    Amin MN; Ahmad I; Iqbal M; Abbas A; Khan K; Faraz MI; Alabdullah AA; Ullah S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of concrete materials uniaxial compressive strength using soft computing techniques.
    Raju MR; Rahman M; Hasan MM; Islam MM; Alam MS
    Heliyon; 2023 Nov; 9(11):e22502. PubMed ID: 38034748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Emission Optimization of Ultra-High-Performance Concrete Using Machine Learning Methods.
    Wang M; Du M; Jia Y; Chang C; Zhou S
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Shear Behavior of Concrete Beams Reinforced with FRP Rebars and Stirrups Using ANN Hybridized with Genetic Algorithm.
    Di B; Qin R; Zheng Y; Lv J
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design.
    Ziolkowski P
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.