These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37834585)

  • 21. Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression.
    Nguyen HQ; Ly HB; Tran VQ; Nguyen TA; Le TT; Pham BT
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32156033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilabel Image Classification Based Fresh Concrete Mix Proportion Monitoring Using Improved Convolutional Neural Network.
    Yang H; Jiao SJ; Yin FD
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques.
    Faraj RH; Mohammed AA; Omer KM
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71338-71357. PubMed ID: 35596861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-Based Adaptive Machine Learning Approach in Concrete Mix Design.
    Ziolkowski P; Niedostatkiewicz M; Kang SB
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33800672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid artificial intelligence approach for modeling the carbonation depth of sustainable concrete containing fly ash.
    Kazemi R
    Sci Rep; 2024 May; 14(1):11948. PubMed ID: 38789664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematical Modeling and Optimizing of
    Arab MM; Yadollahi A; Ahmadi H; Eftekhari M; Maleki M
    Front Plant Sci; 2017; 8():1853. PubMed ID: 29163583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction model for the compressive strength of green concrete using cement kiln dust and fly ash.
    Bakhoum ES; Amir A; Osama F; Adel M
    Sci Rep; 2023 Feb; 13(1):1864. PubMed ID: 36726037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Mechanical Properties of Highly Functional Lightweight Fiber-Reinforced Concrete Based on Deep Neural Network and Ensemble Regression Trees Methods.
    Stel'makh SA; Shcherban' EM; Beskopylny AN; Mailyan LR; Meskhi B; Razveeva I; Kozhakin A; Beskopylny N
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model.
    Li C; Mei X; Dias D; Cui Z; Zhou J
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Water Resistance of Magnesium Oxychloride Cement Concrete Based upon Hybrid-BP Neural Network.
    Wang P; Qiao H; Xue C; Feng Q
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classifying High Strength Concrete Mix Design Methods Using Decision Trees.
    Alghamdi SJ
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixture Optimization of Cementitious Materials Using Machine Learning and Metaheuristic Algorithms: State of the Art and Future Prospects.
    Song Y; Wang X; Li H; He Y; Zhang Z; Huang J
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing Fenton-like process, homogeneous at neutral pH for ciprofloxacin degradation: Comparing RSM-CCD and ANN-GA.
    Salari M; Nikoo MR; Al-Mamun A; Rakhshandehroo GR; Mooselu MG
    J Environ Manage; 2022 Sep; 317():115469. PubMed ID: 35751268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Mechanical Behaviours of FRP-Confined Circular Concrete Columns Using Artificial Neural Network and Support Vector Regression: Modelling and Performance Evaluation.
    Chen P; Wang H; Cao S; Lv X
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Techniques in Concrete Mix Design.
    Ziolkowski P; Niedostatkiewicz M
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30999557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.