These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37834654)

  • 1. Constitutive Modeling of Annealed OFHC with Wide Strain-Rate and Temperature Effects: Incorporating Dislocation Dynamics and Normalized Microstructural Size Evolution.
    Xu M; Xiao Q; Zu X; Tan Y; Huang Z
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strain rate dependent thermo-elasto-plastic constitutive model for crystalline metallic materials.
    Chen C; Wang T
    Sci Rep; 2021 Apr; 11(1):8859. PubMed ID: 33893373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Constitutive Models and Microstructure Evolution of GW103K Magnesium Alloy during Hot Deformation.
    Yin L; Wu Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Comparation of Arrhenius-Type and Modified Johnson-Cook Constitutive Models at Elevated Temperature for Annealed TA31 Titanium Alloy.
    Yang S; Liang P; Gao F; Song D; Jiang P; Zhao M; Kong N
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature.
    Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain size-dependent crystal plasticity constitutive model for polycrystal materials.
    Moghaddam MG; Achuthan A; Bednarcyk BA; Arnold SM; Pineda EJ
    Mater Sci Eng A Struct Mater; 2017 Aug; Volume 703():521-532. PubMed ID: 32690982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates Using Johnson-Cook and Modified Johnson-Cook-Based Models: A Review.
    Shokry A; Gowid S; Mulki H; Kharmanda G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy.
    Patnamsetty M; Saastamoinen A; Somani MC; Peura P
    Sci Technol Adv Mater; 2020; 21(1):43-55. PubMed ID: 32158507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Tensile Deformation Behavior and Constitutive Models of GH3230 Superalloy Double-Sheet.
    Chen Y; Li H; Zhang S; Luo J; Teng J; Lv Y; Li M
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures.
    Murugesan M; Jung DW
    Heliyon; 2019 Apr; 5(4):e01347. PubMed ID: 31025005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superplasticity of Ti-6Al-4V Titanium Alloy: Microstructure Evolution and Constitutive Modelling.
    Mosleh AO; Mikhaylovskaya AV; Kotov AD; Kwame JS; Aksenov SA
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MTS Model Application to Materials Not Starting in the Annealed Condition.
    Follansbee P
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress.
    Song Y; Garcia-Gonzalez D; Rusinek A
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32290225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Constitutive Relationship of Mg-Gd-Y-Zr-Ag Alloy during High Temperature Deformation Process.
    Peng S; Wu Y; Zhang T; Xie Q; Yuan Z; Yin L
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Dislocation Density Evolution on Mechanical Behavior of OFHC Copper during High-Speed Machining.
    Liu H; Zhang J; Xu X; Qi Y; Liu Z; Zhao W
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31344829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dislocation Networks and the Microstructural Origin of Strain Hardening.
    Sills RB; Bertin N; Aghaei A; Cai W
    Phys Rev Lett; 2018 Aug; 121(8):085501. PubMed ID: 30192605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy.
    Ma J; Wang S; Yang J; Zhang W; Chen W; Cui G; Chu G
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy.
    Abd El-Aty A; Xu Y; Zhang SH; Ha S; Ma Y; Chen D
    J Adv Res; 2019 Jul; 18():19-37. PubMed ID: 30809392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warm Deformation Behavior and Flow Stress Modeling of AZ31B Magnesium Alloy under Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of the Dynamic Deformation of Pure Molybdenum at High Strain Rates and High Temperatures.
    Chen S; Li WB; Wang XM; Yao WJ; Song JP; Jiang XC; Yan BY
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.