BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37834732)

  • 1. Contribution of Various Loads to the Convex Shape of Rock Wool Insulation Slabs during Production.
    Hladnik J; Jerman B
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of boron in glass wool insulation.
    Jensen AA
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):73-8. PubMed ID: 18998186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal insulation materials in architecture: a comparative test study with aerogel and rock wool.
    Danaci HM; Akin N
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72979-72990. PubMed ID: 35619004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chemical and physical characteristics and toxicology of man-made mineral fibers].
    Foà V; Basilico S
    Med Lav; 1999; 90(1):10-52. PubMed ID: 10339953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization.
    Wanko A; Laurent J; Bois P; Mosé R; Wagner-Kocher C; Bahlouli N; Tiffay S; Braun B; Provo kluit PW
    Environ Technol; 2016; 37(3):369-80. PubMed ID: 26165374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.
    Wohlleben W; Waindok H; Daumann B; Werle K; Drum M; Egenolf H
    Part Fibre Toxicol; 2017 Aug; 14(1):29. PubMed ID: 28784145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal plasma processing of high temperature insulation wools.
    Dhamale GD; Ajith N; Ghorui S
    Waste Manag; 2023 Aug; 168():290-300. PubMed ID: 37329835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stone Wool Substrate Cover Incision Impacts on the Root-Zone Water Content, Temperature, and Yield of Tomato Cultures.
    Ahn TI; Yang JS; Im YH; Youn YJ; Lee JY
    Front Plant Sci; 2022; 13():875730. PubMed ID: 35755653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of Stone Wool Fibers with Phenol-urea-formaldehyde Binder in a Synthetic Lung Fluid.
    Barly SHQ; Okhrimenko DV; Solvang M; Yue Y; Stipp SLS
    Chem Res Toxicol; 2019 Dec; 32(12):2398-2410. PubMed ID: 31682107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius.
    Schenk D; Zysset P
    Biomech Model Mechanobiol; 2023 Apr; 22(2):453-466. PubMed ID: 36477423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of health implications related to processing and use of natural wool insulation products.
    Mansour E; Loxton C; Elias RM; Ormondroyd GA
    Environ Int; 2014 Dec; 73():402-12. PubMed ID: 25240116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carcinogenicity of the insulation wools: reassessment of the IARC evaluation.
    Brown RC; Davis JM; Douglas D; Gruber UF; Hoskins JA; Ilgren EB; Johnson NF; Rossiter CE; Wagner JC
    Regul Toxicol Pharmacol; 1991 Aug; 14(1):12-23. PubMed ID: 1947241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occupational irritant contact dermatitis from synthetic mineral fibres according to Finnish statistics.
    Jolanki R; Mäkinen I; Suuronen K; Alanko K; Estlander T
    Contact Dermatitis; 2002 Dec; 47(6):329-33. PubMed ID: 12581277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Thermal Properties of Mineral Wool Required for the Safety Analysis of Sandwich Panels Subjected to Fire Loads.
    Ablaoui EM; Malendowski M; Szymkuc W; Pozorski Z
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deflection Estimation Model for Prestressed Concrete Slabs with Plastic Inserts Forming Voids.
    Zavalis M; Daugevičius M; Jokūbaitis A; Zavalis R; Valivonis J
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Behavior of High-Strength Concrete Slabs Reinforced with GFRP Bars.
    Adam MA; Erfan AM; Habib FA; El-Sayed TA
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin Slabs Made of High-Performance Steel Fibre-Reinforced Cementitious Composite: Mechanical Behaviour, Statistical Analysis and Microstructural Investigation.
    Soares Junior PRR; Maciel PS; Barreto RR; Silva Neto JTD; Siqueira Corrêa EC; Bezerra ACDS
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-Mechanical Analysis of Mass Concrete Foundation Slabs at Early Age-Essential Aspects and Experiences from the FE Modelling.
    Smolana A; Klemczak B; Azenha M; Schlicke D
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal heterogeneity of selected retreats in cool-temperate viviparous lizards suggests a potential benefit of future climate warming.
    Chukwuka CO; Mello RSR; Cree A; Monks JM
    J Therm Biol; 2021 Apr; 97():102869. PubMed ID: 33863433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.