BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37834750)

  • 1. Development of a Novel High-Temperature Microemulsion for Enhanced Oil Recovery in Tight Oil Reservoirs.
    Xiao L; Hou J; Wang W; Raj I
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Influence of Different Factors on Spontaneous Oil Recovery of Nanosurfactants in a Tight Reservoir.
    Wang J; Zhang J; Song L; Jiang H; Xu H; Yang K; Ke W
    ACS Omega; 2021 Aug; 6(30):19378-19385. PubMed ID: 34368524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Static and Dynamic Imbibition Effect of Surfactants and the Relative Mechanism in Low-Permeability Reservoirs.
    Tian F; Zhao Y; Yan Y; Gou X; Shi L; Qin F; Shi J; Lv J; Cao B; Li Y; Lu X
    ACS Omega; 2020 Jul; 5(28):17442-17449. PubMed ID: 32715229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influencing Factors of Surfactant Stripping Crude Oil and Spontaneous Imbibition Mechanism of Surfactants in a Tight Reservoir.
    Cao G; Cheng Q; Liu Y; Bu R; Zhang N; Wang P
    ACS Omega; 2022 Jun; 7(22):19010-19020. PubMed ID: 35694475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Law and Mechanism of the Sample Size Effect of Imbibition Oil Recovery of Tight Sedimentary Tuff.
    Li S; Yang S; Dong W; Wang M; Yu J
    ACS Omega; 2022 Jan; 7(2):1956-1974. PubMed ID: 35071885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the driving forces of the fluorocarbon surfactant-assisted spontaneous imbibition using thermogravimetric analysis (TGA).
    Chen H; Fan H; Zhang Y; Xu X; Liu L; Hou Q
    RSC Adv; 2018 Nov; 8(67):38196-38203. PubMed ID: 35559056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Mechanisms of Spontaneous Imbibition at High Pressures for Tight Oil Recovery.
    Wang C; Gao H; Qi Y; Li X; Zhang R; Fan H
    ACS Omega; 2020 Jun; 5(22):12727-12734. PubMed ID: 32548456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation on Spontaneous Imbibition of Surfactant Mixtures in Low Permeability Reservoirs.
    Wang H; You Q; Zhang T; Adenutsi CD; Gao M
    ACS Omega; 2023 Apr; 8(15):14171-14176. PubMed ID: 37091392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mathematical Model of Surfactant Spontaneous Imbibition in a Tight Oil Matrix with Diffusion and Adsorption.
    Wang F; Cheng H; Song K
    Langmuir; 2021 Jul; 37(29):8789-8800. PubMed ID: 34255969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Coupled Effect of IFT Reduction and Wettability Alteration for Oil Recovery: New Insights.
    Deng X; Kamal MS; Patil S; Hussain SMS; Mahmoud M; Al-Shehri D; Al-Shalabi EW
    ACS Omega; 2023 Apr; 8(13):12069-12078. PubMed ID: 37033808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability Changes Due to Nanomaterials and Alkali-A Proposed Formulation for EOR.
    Saleh S; Neubauer E; Borovina A; Hincapie RE; Clemens T; Ness D
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of MgO, γ-Al
    Nowrouzi I; Khaksar Manshad A; Mohammadi AH
    ACS Omega; 2022 Jul; 7(26):22161-22172. PubMed ID: 35811910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imbibition and Oil Recovery Mechanism of Fracturing Fluids in Tight Sandstone Reservoirs.
    Gao H; Wang Y; Xie Y; Ni J; Li T; Wang C; Xue J
    ACS Omega; 2021 Jan; 6(3):1991-2000. PubMed ID: 33521439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery.
    Babadagli T
    J Colloid Interface Sci; 2002 Feb; 246(1):203-13. PubMed ID: 16290401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric analysis of surfactant-aided imbibition in fractured carbonates.
    Adibhatla B; Mohanty KK
    J Colloid Interface Sci; 2008 Jan; 317(2):513-22. PubMed ID: 17961587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of nanofluid enhanced oil recovery by spontaneous imbibition.
    Zhang J; Huang H; Zhang M; Wang W
    RSC Adv; 2023 May; 13(24):16165-16174. PubMed ID: 37260713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.