These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37835934)
1. Preparation and Characterization of TiO Nijpanich S; Nimpaiboon A; Rojruthai P; Park JH; Hagio T; Ichino R; Sakdapipanich J Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835934 [TBL] [Abstract][Full Text] [Related]
2. The Preparation of Hydroxyl-Terminated Deproteinized Natural Rubber Latex by Photochemical Reaction Utilizing Nanometric TiO Sillapasuwan A; Saekhow P; Rojruthai P; Sakdapipanich J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890654 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl-Terminated Saponified Natural Rubber Based on the H Nijpanich S; Nimpaiboon A; Rojruthai P; Sakdapipanich J Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920500 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Sakdapipanich JT J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO₂. Ibrahim S; Othman N; Sreekantan S; Tan KS; Mohd Nor Z; Ismail H Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961141 [TBL] [Abstract][Full Text] [Related]
6. The Interplay of Protein Hydrolysis and Ammonia in the Stability of Payungwong N; Sakdapipanich J; Wu J; Ho CC Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139887 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Silver Nanoparticles/Titanium Dioxide in Poly(acrylic acid- Inphonlek S; Ruksakulpiwat C; Ruksakulpiwat Y Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201757 [TBL] [Abstract][Full Text] [Related]
8. Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber. Hayeemasae N; Saiwari S; Soontaranon S; Masa A Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808758 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of latex transcriptomes reveals the potential mechanisms underlying rubber molecular weight variations between the Hevea brasiliensis clones RRIM600 and Reyan7-33-97. Xin S; Hua Y; Li J; Dai X; Yang X; Udayabhanu J; Huang H; Huang T BMC Plant Biol; 2021 May; 21(1):244. PubMed ID: 34051757 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Nguyen LH; Nguyen HD; Tran PT; Nghiem TT; Nguyen TT; Dao VL; Phan TN; To AK; Hatamoto M; Yamaguchi T; Kasai D; Fukuda M Biodegradation; 2020 Dec; 31(4-6):303-317. PubMed ID: 32914250 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation. Nakano Y; Mitsuda N; Ide K; Mori T; Mira FR; Rosmalawati S; Watanabe N; Suzuki K BMC Plant Biol; 2021 Sep; 21(1):420. PubMed ID: 34517831 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Tanaka Y Biomacromolecules; 2005; 6(4):1858-63. PubMed ID: 16004421 [TBL] [Abstract][Full Text] [Related]
13. Microbial communities in natural rubber coagula during maturation: impacts on technological properties of dry natural rubber. Salomez M; Subileau M; Vallaeys T; Santoni S; Bonfils F; Sainte-Beuve J; Intapun J; Granet F; Vaysse L; Dubreucq É J Appl Microbiol; 2018 Feb; 124(2):444-456. PubMed ID: 29222942 [TBL] [Abstract][Full Text] [Related]
14. Identification of cis conformation natural rubber and proteins in Ficus altissima Blume latex. Dai L; Yang H; Zhao X; Wang L Plant Physiol Biochem; 2021 Oct; 167():376-384. PubMed ID: 34404008 [TBL] [Abstract][Full Text] [Related]
16. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Guerra NB; Sant'Ana Pegorin G; Boratto MH; de Barros NR; de Oliveira Graeff CF; Herculano RD Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112126. PubMed ID: 34082943 [TBL] [Abstract][Full Text] [Related]
17. Molecular Mechanisms of Natural Rubber Biosynthesis. Yamashita S; Takahashi S Annu Rev Biochem; 2020 Jun; 89():821-851. PubMed ID: 32228045 [TBL] [Abstract][Full Text] [Related]
18. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. Salomez M; Subileau M; Intapun J; Bonfils F; Sainte-Beuve J; Vaysse L; Dubreucq E J Appl Microbiol; 2014 Oct; 117(4):921-9. PubMed ID: 24891014 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Bamba T; Fukusaki E; Kobayashi A; Tanaka Y Biomacromolecules; 2005; 6(4):1851-7. PubMed ID: 16004420 [TBL] [Abstract][Full Text] [Related]
20. Rubber sheet strewn with TiO2 particles: photocatalytic activity and recyclability. Sriwong C; Wongnawa S; Patarapaiboolchai O J Environ Sci (China); 2012; 24(3):464-72. PubMed ID: 22655360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]