These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37836029)

  • 1. Evaluation of Physicochemical Properties of a Hydroxyapatite Polymer Nanocomposite for Use in Fused Filament Fabrication.
    Nguyen NM; Kakarla AB; Nukala SG; Kong C; Baji A; Kong I
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.
    Liu C; Wong HM; Yeung KWK; Tjong SC
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering.
    Chi M; Li N; Cui J; Karlin S; Rohr N; Sharma N; Thieringer FM
    Front Bioeng Biotechnol; 2022; 10():989729. PubMed ID: 36159699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds.
    Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds.
    Karimipour-Fard P; Jeffrey MP; JonesTaggart H; Pop-Iliev R; Rizvi G
    J Mech Behav Biomed Mater; 2021 Aug; 120():104583. PubMed ID: 34062373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering.
    Abdal-hay A; Sheikh FA; Lim JK
    Colloids Surf B Biointerfaces; 2013 Feb; 102():635-43. PubMed ID: 23107942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects.
    Åkerlund E; Diez-Escudero A; Grzeszczak A; Persson C
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printed Polyamide 12 (PA12) and Polylactic Acid (PLA) Alumina (Al
    Petousis M; Vidakis N; Mountakis N; Papadakis V; Tzounis L
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration.
    Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X
    Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanohydroxyapatite in dentistry: A comprehensive review.
    Pushpalatha C; Gayathri VS; Sowmya SV; Augustine D; Alamoudi A; Zidane B; Hassan Mohammad Albar N; Bhandi S
    Saudi Dent J; 2023 Sep; 35(6):741-752. PubMed ID: 37817794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano Sized Hydroxyapatite-Polylactic Acid-Vancomycin in Alleviation of Chronic Osteomyelitis.
    Lv XF; Zhou DM; Sun XH; Zhao Z
    Drug Des Devel Ther; 2022; 16():1983-1993. PubMed ID: 35783197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Drug-Eluting Nano-Hydroxylapatite Filled Polycaprolactone Nanocomposites Using Solution-Extrusion 3D Printing Technique.
    Chou PY; Chou YC; Lai YH; Lin YT; Lu CJ; Liu SJ
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer.
    Nazir F; Iqbal M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration.
    Bayart M; Dubus M; Charlon S; Kerdjoudj H; Baleine N; Benali S; Raquez JM; Soulestin J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential.
    Manzoor F; Golbang A; Jindal S; Dixon D; McIlhagger A; Harkin-Jones E; Crawford D; Mancuso E
    J Mech Behav Biomed Mater; 2021 Sep; 121():104601. PubMed ID: 34077906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.