BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 37836050)

  • 1. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors.
    Ding H; Liu J; Shen X; Li H
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors.
    Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Bionic Skin Based on Conductive Polymer Gels.
    Li H; Gao G; Xu Z; Tang D; Chen T
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100480. PubMed ID: 34505726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional conductive hydrogels and their applications as smart wearable devices.
    Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J
    J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Conductive Hydrogel Used in Flexible Strain Sensor.
    Tang L; Wu S; Qu J; Gong L; Tang J
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors.
    Cao J; Wu B; Yuan P; Liu Y; Hu C
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes.
    Karimzadeh Z; Mahmoudpour M; Rahimpour E; Jouyban A
    Adv Colloid Interface Sci; 2022 Jul; 305():102705. PubMed ID: 35640315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors.
    Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R
    Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Saline-Enabled Hydrophobic Homogeneous Cross-Linking for Extremely Soft, Tough, and Stretchable Conductive Hydrogels as High-Sensitive Strain Sensors.
    Wang C; Yang B; Xiang R; Ji J; Wu Y; Tan S
    ACS Nano; 2023 Nov; 17(22):23194-23206. PubMed ID: 37926964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels.
    Li S; Zhou X; Dong Y; Li J
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000444. PubMed ID: 32996221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors.
    Li G; Li C; Li G; Yu D; Song Z; Wang H; Liu X; Liu H; Liu W
    Small; 2022 Feb; 18(5):e2101518. PubMed ID: 34658130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in MXene Hydrogel for Wearable Electronics.
    Ren Y; He Q; Xu T; Zhang W; Peng Z; Meng B
    Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors.
    Liang Y; Ye L; Sun X; Lv Q; Liang H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics.
    Zhang J; Hu Y; Zhang L; Zhou J; Lu A
    Nanomicro Lett; 2022 Dec; 15(1):8. PubMed ID: 36477664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors.
    Mo F; Zhou P; Lin S; Zhong J; Wang Y
    Adv Healthc Mater; 2024 Jun; ():e2401503. PubMed ID: 38857480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.