These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37836135)
1. Selection and Characterization of Phosphate-Solubilizing Fungi and Their Effects on Coffee Plantations. Arias RM; Heredia Abarca G; Del Carmen Perea Rojas Y; de la Cruz Elizondo Y; García Guzman KY Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836135 [TBL] [Abstract][Full Text] [Related]
2. [Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management]. Posada RH; Sánchez de Prager M; Sieverding E; Aguilar Dorantes K; Heredia-Abarca GP Rev Biol Trop; 2012 Sep; 60(3):1075-96. PubMed ID: 23025081 [TBL] [Abstract][Full Text] [Related]
3. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia. Elias F; Woyessa D; Muleta D Int J Microbiol; 2016; 2016():5472601. PubMed ID: 27688771 [TBL] [Abstract][Full Text] [Related]
4. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Wahid OA; Mehana TA Microbiol Res; 2000 Sep; 155(3):221-7. PubMed ID: 11061191 [TBL] [Abstract][Full Text] [Related]
5. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Tahir M; Khalid U; Ijaz M; Shah GM; Naeem MA; Shahid M; Mahmood K; Ahmad N; Kareem F Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):15-24. PubMed ID: 29728340 [TBL] [Abstract][Full Text] [Related]
6. Soil fungal communities differ between shaded and sun-intensive coffee plantations in El Salvador. Rao MV; Rice RA; Fleischer RC; Muletz-Wolz CR PLoS One; 2020; 15(4):e0231875. PubMed ID: 32330174 [TBL] [Abstract][Full Text] [Related]
7. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: a promising approach for improving cotton growth. Ahmad I; Ahmad M; Hussain A; Jamil M Folia Microbiol (Praha); 2021 Feb; 66(1):115-125. PubMed ID: 33099750 [TBL] [Abstract][Full Text] [Related]
8. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739 [TBL] [Abstract][Full Text] [Related]
9. [Screening and identification of an efficient phosphate-solubilizing Lyu J; Yu C Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2923-2934. PubMed ID: 33345493 [TBL] [Abstract][Full Text] [Related]
10. Mutation breeding of Peng Q; Xiao Y; Zhang S; Zhou C; Xie A; Li Z; Tan A; Zhou L; Xie Y; Zhao J; Wu C; Luo L; Huang J; He T; Sun R PeerJ; 2022; 10():e13076. PubMed ID: 35341057 [TBL] [Abstract][Full Text] [Related]
11. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. Toro M; Azcón R; Barea JM New Phytol; 1998 Feb; 138(2):265-273. PubMed ID: 33863097 [TBL] [Abstract][Full Text] [Related]
12. Improving the Growth and Productivity of Macrotyloma uniflorum Medicinal Plant by the Co-inoculation of P, Zn and K-Solubilizing Fungi Under Field Conditions. Rawat J; Saxena J; Sanwal P; Maddela NR; Nain L; Prasad R Curr Microbiol; 2023 Jul; 80(9):277. PubMed ID: 37434070 [TBL] [Abstract][Full Text] [Related]
13. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil. Wang J; Zhao YG; Maqbool F Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738 [TBL] [Abstract][Full Text] [Related]
14. Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Doilom M; Guo JW; Phookamsak R; Mortimer PE; Karunarathna SC; Dong W; Liao CF; Yan K; Pem D; Suwannarach N; Promputtha I; Lumyong S; Xu JC Front Microbiol; 2020; 11():585215. PubMed ID: 33123114 [TBL] [Abstract][Full Text] [Related]
15. Production of nitrogen fixing Din M; Nelofer R; Salman M; Abdullah ; Khan FH; Khan A; Ahmad M; Jalil F; Din JU; Khan M Biotechnol Rep (Amst); 2019 Jun; 22():e00323. PubMed ID: 30976534 [TBL] [Abstract][Full Text] [Related]
16. Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles. Al Attiya W; Hassan ZU; Al-Thani R; Jaoua S PLoS One; 2021; 16(10):e0259302. PubMed ID: 34714880 [TBL] [Abstract][Full Text] [Related]
17. Coffee berry borer (Hypothenemus hampei)—a vector for toxigenic molds and ochratoxin A contamination in coffee beans. Velmourougane K; Bhat R; Gopinandhan TN Foodborne Pathog Dis; 2010 Oct; 7(10):1279-84. PubMed ID: 20618085 [TBL] [Abstract][Full Text] [Related]
18. On the soil-bean-cup relationships in Coffea arabica L. Morales-Ramos V; Escamilla-Prado E; Ruiz-Carbajal RA; Pérez-Sato JA; Velázquez-Morales JA; Servín-Juárez R J Sci Food Agric; 2020 Dec; 100(15):5434-5441. PubMed ID: 32562262 [TBL] [Abstract][Full Text] [Related]
19. [Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion]. Shi F; Yin Z; Jiang H; Fan B Wei Sheng Wu Xue Bao; 2014 Nov; 54(11):1333-43. PubMed ID: 25752140 [TBL] [Abstract][Full Text] [Related]