These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37836313)

  • 1. Direct Evidence of Dynamic Metal Support Interactions in Co/TiO
    Salusso D; Scarfiello C; Efimenko A; Pham Minh D; Serp P; Soulantica K; Zafeiratos S
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.
    Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA
    J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO
    Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G
    J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cobalt oxidation state in preferential CO oxidation on CoO
    Rattigan E; Sun Z; Gallo T; Nino MA; Parreiras SO; Martín-Fuentes C; Martin-Romano JC; Écija D; Escudero C; Villar I; Rodríguez-Fernández J; Lauritsen JV
    Phys Chem Chem Phys; 2022 Apr; 24(16):9236-9246. PubMed ID: 35388844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface properties of TiO
    Byun MY; Kim YE; Baek JH; Jae J; Lee MS
    RSC Adv; 2021 Dec; 12(2):860-868. PubMed ID: 35425103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifunctionality of Re Supported on TiO
    Phongprueksathat N; Ting KW; Mine S; Jing Y; Toyoshima R; Kondoh H; Shimizu KI; Toyao T; Urakawa A
    ACS Catal; 2023 Aug; 13(16):10734-10750. PubMed ID: 37614518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the Promotional Effect of La
    Wang Z; Huang L; Su B; Xu J; Ding Z; Wang S
    Chemistry; 2020 Jan; 26(2):517-523. PubMed ID: 31651058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of Metal-Support Interactions for CO
    Ziemba M; Weyel J; Zeller P; Welzenbach J; Efimenko A; Hävecker M; Hess C
    J Phys Chem Lett; 2024 May; 15(18):4928-4932. PubMed ID: 38686678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in Fischer-Tropsch Catalysts.
    van Deelen TW; Nijhuis JJ; Krans NA; Zečević J; de Jong KP
    ACS Catal; 2018 Nov; 8(11):10581-10589. PubMed ID: 30416841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defects Tune the Strong Metal-Support Interactions in Copper Supported on Defected Titanium Dioxide Catalysts for CO
    Belgamwar R; Verma R; Das T; Chakraborty S; Sarawade P; Polshettiwar V
    J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37018652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of metal-support interaction for tunable CO hydrogenation performance over Ru/TiO
    Lin H; Zhang W; Shen H; Yu H; An Y; Lin T; Zhong L
    Nanoscale; 2024 Mar; 16(12):6151-6162. PubMed ID: 38445306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Reaction Mechanism in CO
    Ren Y; Xin C; Hao Z; Sun H; Bernasek SL; Chen W; Xu GQ
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2548-2554. PubMed ID: 31850736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD.
    Lukashuk L; Yigit N; Rameshan R; Kolar E; Teschner D; Hävecker M; Knop-Gericke A; Schlögl R; Föttinger K; Rupprechter G
    ACS Catal; 2018 Sep; 8(9):8630-8641. PubMed ID: 30221030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO
    Abdel-Mageed AM; Klyushin A; Knop-Gericke A; Schlögl R; Behm RJ
    J Phys Chem Lett; 2019 Jul; 10(13):3645-3653. PubMed ID: 31192610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Cobalt Carbide Formation in a Co/TiO
    van Ravenhorst IK; Hoffman AS; Vogt C; Boubnov A; Patra N; Oord R; Akatay C; Meirer F; Bare SR; Weckhuysen BM
    ACS Catal; 2021 Mar; 11(5):2956-2967. PubMed ID: 33815895
    [No Abstract]   [Full Text] [Related]  

  • 19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting CO hydrogenation towards C
    Xu M; Qin X; Xu Y; Zhang X; Zheng L; Liu JX; Wang M; Liu X; Ma D
    Nat Commun; 2022 Nov; 13(1):6720. PubMed ID: 36344530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.