These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37836345)

  • 1. Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications.
    Byun J; Kho W; Hwang H; Kang Y; Kang M; Noh T; Kim H; Lee J; Kim HB; Ahn JH; Ahn SE
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application.
    Kho W; Park G; Kim J; Hwang H; Byun J; Kang Y; Kang M; Ahn SE
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-Filtering Ferroelectric Tunnel Junctions as Multiferroic Synapses for Neuromorphic Computing.
    Yang Y; Xi Z; Dong Y; Zheng C; Hu H; Li X; Jiang Z; Lu WC; Wu D; Wen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56300-56309. PubMed ID: 33287535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-shape dependence of the spike-timing dependent synaptic plasticity in ferroelectric-tunnel-junction synapses.
    Stoliar P; Yamada H; Toyosaki Y; Sawa A
    Sci Rep; 2019 Nov; 9(1):17740. PubMed ID: 31780729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2016; 10():474. PubMed ID: 27857680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferroelectric synaptic devices based on CMOS-compatible HfAlO
    Kim D; Kim J; Yun S; Lee J; Seo E; Kim S
    Nanoscale; 2023 May; 15(18):8366-8376. PubMed ID: 37092534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition.
    Wu J; Yılmaz E; Zhang M; Li H; Tan KC
    Front Neurosci; 2020; 14():199. PubMed ID: 32256308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain.
    Iyer LR; Chua Y; Li H
    Front Neurosci; 2021; 15():608567. PubMed ID: 33841072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks.
    Fang Y; Wang Z; Gomez J; Datta S; Khan AI; Raychowdhury A
    Front Neurosci; 2019; 13():855. PubMed ID: 31456659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.
    Mozafari M; Ganjtabesh M; Nowzari-Dalini A; Masquelier T
    Front Neurosci; 2019; 13():625. PubMed ID: 31354403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning.
    Srinivasan G; Sengupta A; Roy K
    Sci Rep; 2016 Jul; 6():29545. PubMed ID: 27405788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.