These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37836359)

  • 1. Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators.
    Kim H; Nguyen DC; Luu TT; Ding Z; Lin ZH; Choi D
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application.
    Chen Y; Ling Y; Yin R
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing Technics for Fabric/Fiber-Based Triboelectric Nanogenerators: From Yarns to Micro-Nanofibers.
    Fan C; Zhang Y; Liao S; Zhao M; Lv P; Wei Q
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems.
    Huang P; Wen DL; Qiu Y; Yang MH; Tu C; Zhong HS; Zhang XS
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabric-Based Triboelectric Nanogenerators.
    Liu J; Gu L; Cui N; Xu Q; Qin Y; Yang R
    Research (Wash D C); 2019; 2019():1091632. PubMed ID: 31912024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators.
    Wu Y; Luo Y; Cuthbert TJ; Shokurov AV; Chu PK; Feng SP; Menon C
    Adv Sci (Weinh); 2022 Apr; 9(11):e2106008. PubMed ID: 35187859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics.
    Gołąbek J; Strankowski M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing.
    Chen L; Wang T; Shen Y; Wang F; Chen C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile.
    Xiong J; Lee PS
    Sci Technol Adv Mater; 2019; 20(1):837-857. PubMed ID: 31497178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics.
    Meng X; Cai C; Luo B; Liu T; Shao Y; Wang S; Nie S
    Nanomicro Lett; 2023 May; 15(1):124. PubMed ID: 37166487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-based triboelectric nanogenerators and their applications: a review.
    Han J; Xu N; Liang Y; Ding M; Zhai J; Sun Q; Wang ZL
    Beilstein J Nanotechnol; 2021; 12():151-171. PubMed ID: 33614382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications.
    Duan Q; Peng W; He J; Zhang Z; Wu Z; Zhang Y; Wang S; Nie S
    Small Methods; 2023 Feb; 7(2):e2201251. PubMed ID: 36563114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing of Triboelectric Nanogenerators by Digital Light Processing Technique for Mechanical Energy Harvesting.
    Chiappone A; Roppolo I; Scavino E; Mogli G; Pirri CF; Stassi S
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53974-53983. PubMed ID: 37945515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence.
    Dong K; Peng X; Wang ZL
    Adv Mater; 2020 Feb; 32(5):e1902549. PubMed ID: 31348590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switchable Power Generation in Triboelectric Nanogenerator Toward Chip-Less Wearable Power Module Applications.
    Zhou J; Ma X; Gao J; Kim E; Deng Z; Rao Q; Li WD; Ki DK; Shin DM
    Small; 2024 Aug; 20(31):e2306980. PubMed ID: 38344850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators.
    Yang L; Ma Z; Tian Y; Meng B; Peng Z
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34200150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Largely Improving the Output Performance of Stretchable Triboelectric Nanogenerators via Thermo-Compressive Technology.
    Chen Q; Wang A; Yang D; Wei X; Zhang L; Wu Z; Wang L; Qin Y
    Small; 2024 Mar; 20(12):e2307070. PubMed ID: 37940630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics.
    Aazem I; Mathew DT; Radhakrishnan S; Vijoy KV; John H; Mulvihill DM; Pillai SC
    RSC Adv; 2022 Mar; 12(17):10545-10572. PubMed ID: 35425002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide-based triboelectric nanogenerators: A review.
    Torres FG; De-la-Torre GE
    Carbohydr Polym; 2021 Jan; 251():117055. PubMed ID: 33142607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.