These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37836359)

  • 21. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures.
    Kim DE; Shin S; Zhang G; Choi D; Jung J
    RSC Adv; 2023 Apr; 13(16):11142-11149. PubMed ID: 37056967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber-Based Self-Charging Power Fabric.
    Yang Y; Xie L; Wen Z; Chen C; Chen X; Wei A; Cheng P; Xie X; Sun X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42356-42362. PubMed ID: 30460839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.
    Feng PY; Xia Z; Sun B; Jing X; Li H; Tao X; Mi HY; Liu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16916-16927. PubMed ID: 33819011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triboelectric nanogenerators as wearable power sources and self-powered sensors.
    Pu X; Zhang C; Wang ZL
    Natl Sci Rev; 2023 Jan; 10(1):nwac170. PubMed ID: 36684511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators.
    Xu J; Zou Y; Nashalian A; Chen J
    Front Chem; 2020; 8():577327. PubMed ID: 33330365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics.
    Jeong J; Kwon JH; Lim K; Biswas S; Tibaldi A; Lee S; Oh HJ; Kim JH; Ko J; Lee DW; Cho H; Lang P; Jang J; Lee S; Bae JH; Kim H
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31484316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive Triboelectric Nanogenerators for Long-Term Self-Treatment: A Review.
    Zhao Z; Lu Y; Mi Y; Meng J; Wang X; Cao X; Wang N
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports.
    Luo J; Gao W; Wang ZL
    Adv Mater; 2021 Apr; 33(17):e2004178. PubMed ID: 33759259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties.
    Gunawardhana KRS; Wanasekara ND; Wijayantha KG; Dharmasena RDI
    ACS Appl Electron Mater; 2022 Feb; 4(2):678-688. PubMed ID: 35573892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core-Sheath Fiber-Based Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Straight-Arm Sit-Up Sensing.
    Yu B; Long J; Huang T; Xiang Z; Liu M; Zhang X; Zhu J; Yu H
    ACS Omega; 2023 Aug; 8(34):31427-31435. PubMed ID: 37663522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasticized PVC-Gel Single Layer-Based Stretchable Triboelectric Nanogenerator for Harvesting Mechanical Energy and Tactile Sensing.
    Park H; Oh SJ; Kim D; Kim M; Lee C; Joo H; Woo I; Bae JW; Lee JH
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201070. PubMed ID: 35618482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Respiration-driven triboelectric nanogenerators for biomedical applications.
    Li J; Long Y; Yang F; Wang X
    EcoMat; 2020 Sep; 2(3):e12045. PubMed ID: 34172981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation.
    Du G; Wang J; Liu Y; Yuan J; Liu T; Cai C; Luo B; Zhu S; Wei Z; Wang S; Nie S
    Adv Sci (Weinh); 2023 May; 10(15):e2206243. PubMed ID: 36967572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization.
    Vatankhah E; Tadayon M; Ramakrishna S
    Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR.
    Si J; Duan R; Zhang M; Liu X
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring.
    Chen G; Au C; Chen J
    Trends Biotechnol; 2021 Oct; 39(10):1078-1092. PubMed ID: 33551177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Trap Boosted Ultrahigh Triboelectric Charge Density in Nanofibrous Cellulose-Based Triboelectric Nanogenerators.
    Wang N; Yang D; Zhang W; Feng M; Li Z; Ye E; Loh XJ; Wang D
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):997-1009. PubMed ID: 36542844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films.
    Wu Y; Luo Y; Qu J; Daoud WA; Qi T
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55444-55452. PubMed ID: 33253520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors.
    Lee JP; Lee JW; Baik JM
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors.
    Dong K; Wang YC; Deng J; Dai Y; Zhang SL; Zou H; Gu B; Sun B; Wang ZL
    ACS Nano; 2017 Sep; 11(9):9490-9499. PubMed ID: 28901749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.