BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37836367)

  • 1. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric-Semiconductor-Lossy Metal Film Stacks.
    Ma Y; Hu J; Li W; Yang Z
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithography-free flexible perfect broadband absorber in visible light based on an all-dielectric multilayer structure.
    Zhao J; Wang Y; Zhu Y; Zhang W; Yu Y
    Opt Lett; 2020 Oct; 45(19):5464-5467. PubMed ID: 33001921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional band-switchable nano-film absorber from narrowband to broadband.
    Wang F; Gao H; Peng W; Li R; Chu S; Yu L; Wang Q
    Opt Express; 2021 Feb; 29(4):5110-5120. PubMed ID: 33726052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays.
    Zhao J; Yu X; Yang X; Th Tee CA; Yuan W; Yu Y
    Opt Lett; 2019 Feb; 44(4):963-966. PubMed ID: 30768031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state.
    Wu F; Wu X; Xiao S; Liu G; Li H
    Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-Processable Nanocrystal-Based Broadband Fabry-Perot Absorber for Reflective Vivid Color Generation.
    Kim SJ; Choi HK; Lee H; Hong SH
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7280-7287. PubMed ID: 30746932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh omnidirectional, broadband, and polarization-independent optical absorption over the visible wavelengths by effective dispersion engineering.
    Jin Y; Park J; Rah Y; Shim J; Yu K
    Sci Rep; 2019 Jul; 9(1):9866. PubMed ID: 31285525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of a Broadband Microwave Composite Thin Film Absorber.
    Zhang Y; Gao Y; Yang S; Li Z; Wang X; Zhang J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy.
    Hou W; Yang F; Chen Z; Dong J; Jiang S
    Opt Express; 2022 Jan; 30(3):4424-4433. PubMed ID: 35209680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super broadband mid-infrared absorbers with ultrathin folded highly-lossy films.
    Zhang H; Wu H; Li X; Hao J; Li Q; Guan Z; Xu H; Liu C
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):254-262. PubMed ID: 36155920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime.
    Luo M; Shen S; Zhou L; Wu S; Zhou Y; Chen L
    Opt Express; 2017 Jul; 25(14):16715-16724. PubMed ID: 28789173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Narrowband and flexible perfect absorber based on a thin-film nano-resonator incorporating a dielectric overlay.
    Park CS; Lee SS
    Sci Rep; 2020 Oct; 10(1):17727. PubMed ID: 33082497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial.
    Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.