These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37836609)

  • 1. Oil-Soluble Exogenous Catalysts and Reservoir Minerals Synergistically Catalyze the Aquathermolysis of Heavy Oil.
    Li Y; Zhang S; Wang Y; Qi G; Yu T; Xin X; Zhao B; Chen G
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Nickel Oxide Catalysts (Bunsenites) for In-Situ Hydrothermal Upgrading Process of Heavy Oil.
    Alonso JPP; Djimasbe R; Zairov R; Yuan C; Al-Muntaser AA; Stepanov A; Nizameeva G; Dovzhenko A; Suwaid MA; Varfolomeev MA; Zinnatullin AL
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Sodium Bentonite in the Thermo-Catalytic Reduction of Viscosity of Heavy Oils.
    Zhou Z; Zhang W; Yu T; Li Y; Struhárová A; Matejdes M; Slaný M; Chen G
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory Experiments on the In Situ Upgrading of Heavy Crude Oil Using Catalytic Aquathermolysis by Acidic Ionic Liquid.
    D Alharthy R; El-Nagar RA; Ghanem A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Insights into the Catalytic Effect of Transition-Metal Ions on the Aquathermal Degradation of Sulfur-Containing Heavy Oil: A DFT Study of Cyclohexyl Phenyl Sulfide Cleavage.
    Tverdov I; Khafizov NR; Madzhidov TI; Varfolomeev MA; Yuan C; Kadkin ON
    ACS Omega; 2020 Aug; 5(31):19589-19597. PubMed ID: 32803053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Structure-Performance Relationship and Viscosity Reduction Performance of Recyclable Magnetic Fe/Zeolite for Crude Oil Aquathermolysis.
    Sun T; Cao M; Liu C; Lin D; Feng X
    ACS Omega; 2022 Nov; 7(44):40267-40274. PubMed ID: 36385861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of ultrasonic irradiation effect on viscosity variations of heavy crude oil.
    Gao J; Li C; Xu D; Wu P; Lin W; Wang X
    Ultrason Sonochem; 2021 Dec; 81():105842. PubMed ID: 34847448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts.
    Durak H; Genel S
    Bioresour Technol; 2020 Aug; 309():123375. PubMed ID: 32315912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application and mechanism of ultrasonic static mixer in heavy oil viscosity reduction.
    Shi C; Yang W; Chen J; Sun X; Chen W; An H; Duo Y; Pei M
    Ultrason Sonochem; 2017 Jul; 37():648-653. PubMed ID: 28427678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.
    Xu C; Lancaster J
    Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
    Tosca NJ; Agee CB; Cockell CS; Glavin DP; Hutzler A; Marty B; McCubbin FM; Regberg AB; Velbel MA; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Pratt LM; Smith AL; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S81-S111. PubMed ID: 34904889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism Analysis of Heavy Oil Viscosity Reduction by Ultrasound and Viscosity Reducers Based on Molecular Dynamics Simulation.
    Zhang S; Li Q; Xie Q; Zhu H; Xu W; Liu Z
    ACS Omega; 2022 Oct; 7(41):36137-36149. PubMed ID: 36278112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Hydrothermal Cracking of Heavy Oil under the Coexisting Conditions of Supercritical Water and Non-condensate Gas.
    Pang Z; Wang Q; Tian C; Chen J
    ACS Omega; 2023 May; 8(20):18029-18040. PubMed ID: 37251137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Ultrasonic Physical-Chemical Viscosity Reduction for Different Heavy Oils.
    Liu J; Yang F; Xia J; Wu F; Pu C
    ACS Omega; 2021 Jan; 6(3):2276-2283. PubMed ID: 33521467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between hydrophobic chitosan derivative and asphaltene in heavy oil to reduce viscosity of heavy oil.
    Yu J; Quan H; Huang Z; Shi J; Chang S; Zhang L; Chen X; Hu Y
    Int J Biol Macromol; 2023 Aug; 247():125573. PubMed ID: 37442502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Molybdenum Disulfide Research in Slurry Bed Heavy Oil Hydrogenation.
    Zhang X; Chen B; Wang J; Zhou Y; Huang X; Huang H; Wang X; Li K
    ACS Omega; 2023 May; 8(21):18400-18407. PubMed ID: 37273628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions.
    Shibulal B; Al-Bahry SN; Al-Wahaibi YM; Elshafie AE; Al-Bemani AS; Joshi SJ
    PLoS One; 2017; 12(2):e0171432. PubMed ID: 28196087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Gas Tracer Convection-Diffusion Model between Wells in Heavy Oil Reservoirs.
    Du D; Zhang Y; Liu X; Zhang L; Ren L; Liu P
    ACS Omega; 2021 Sep; 6(38):24752-24764. PubMed ID: 34604657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mechanistic Study of Layered-Double Hydroxide (LDH)-Derived Nickel-Enriched Mixed Oxide (Ni-MMO) in Ultradispersed Catalytic Pyrolysis of Heavy Oil and Related Petroleum Coke Formation.
    Claydon R; Wood J
    Energy Fuels; 2019 Nov; 33(11):10820-10832. PubMed ID: 32063667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.