These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3783686)

  • 1. Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation.
    Smith DW; Hatfield DL
    J Mol Biol; 1986 Jun; 189(4):663-71. PubMed ID: 3783686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-specific, hypomodified phenylalanyl-tRNA is utilized in translation in preference to the fully modified isoacceptor of normal cells.
    Smith DW; McNamara AL; Mushinski JF; Hatfield DL
    J Biol Chem; 1985 Jan; 260(1):147-51. PubMed ID: 3843839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of a post-transcriptional modification on the function of tRNALys isoaccepting species in translation.
    Smith DW; McNamara AL; Rice M; Hatfield DL
    J Biol Chem; 1981 Oct; 256(19):10033-6. PubMed ID: 6912245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine tRNAs from Bacillus subtilis 168: function of the isoacceptors in a rabbit reticulocyte cell-free protein-synthesizing system.
    Smith DW; McNamara AL; Vold BS
    Nucleic Acids Res; 1982 May; 10(10):3117-23. PubMed ID: 6808463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts.
    Raba M; Limburg K; Burghagen M; Katze JR; Simsek M; Heckman JE; Rajbhandary UL; Gross HJ
    Eur J Biochem; 1979 Jun; 97(1):305-18. PubMed ID: 225173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frameshift suppressor mutations outside the anticodon in yeast proline tRNAs containing an intervening sequence.
    Cummins CM; Culbertson MR; Knapp G
    Mol Cell Biol; 1985 Jul; 5(7):1760-71. PubMed ID: 3894935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacyl-tRNA(anticodon): codon adaptation in human and rabbit reticulocytes.
    Hatfield D; Rice M
    Biochem Int; 1986 Nov; 13(5):835-42. PubMed ID: 3643795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria.
    Ran W; Higgs PG
    Mol Biol Evol; 2010 Sep; 27(9):2129-40. PubMed ID: 20403966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer RNA modification status influences retroviral ribosomal frameshifting.
    Carlson BA; Kwon SY; Chamorro M; Oroszlan S; Hatfield DL; Lee BJ
    Virology; 1999 Mar; 255(1):2-8. PubMed ID: 10049815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA's wobble decoding of the genome: 40 years of modification.
    Agris PF; Vendeix FA; Graham WD
    J Mol Biol; 2007 Feb; 366(1):1-13. PubMed ID: 17187822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs.
    Heckman JE; Sarnoff J; Alzner-DeWeerd B; Yin S; RajBhandary UL
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3159-63. PubMed ID: 6447871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Queuosine modification of the wobble base in tRNAHis influences 'in vivo' decoding properties.
    Meier F; Suter B; Grosjean H; Keith G; Kubli E
    EMBO J; 1985 Mar; 4(3):823-7. PubMed ID: 2988936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria.
    Tomita K; Ueda T; Watanabe K
    Nucleic Acids Res; 1999 Apr; 27(7):1683-9. PubMed ID: 10076000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation.
    Kitchingman GR; Fournier MJ
    Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium-containing tRNA(Glu) and tRNA(Lys) from Escherichia coli: purification, codon specificity and translational activity.
    Wittwer AJ; Ching WM
    Biofactors; 1989 Mar; 2(1):27-34. PubMed ID: 2679651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV.
    Hatfield D; Feng YX; Lee BJ; Rein A; Levin JG; Oroszlan S
    Virology; 1989 Dec; 173(2):736-42. PubMed ID: 2556852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of diet on the queuosine family of tRNAs of germ-free mice.
    Farkas WR
    J Biol Chem; 1980 Jul; 255(14):6832-5. PubMed ID: 6771278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferences of AAA/AAG codon recognition by modified nucleosides, τm
    Sonawane KD; Kamble AS; Fandilolu PM
    J Biomol Struct Dyn; 2018 Dec; 36(16):4182-4196. PubMed ID: 29243556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features.
    Marck C; Grosjean H
    RNA; 2002 Oct; 8(10):1189-232. PubMed ID: 12403461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.