These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37836893)
1. Low-Temperature 3D Printing Technology of Poly (Vinyl Alcohol) Matrix Conductive Hydrogel Sensors with Diversified Path Structures and Good Electric Sensing Properties. Zhao Q; Liu C; Chang Y; Wu H; Hou Y; Wu S; Guo M Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836893 [TBL] [Abstract][Full Text] [Related]
2. A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate. Li M; Wang Y; Wei Q; Zhang J; Chen X; An Y Gels; 2024 Apr; 10(4):. PubMed ID: 38667677 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers. Kim SA; Lee Y; Park K; Park J; An S; Oh J; Kang M; Lee Y; Jo Y; Cho SW; Seo J Int J Bioprint; 2023; 9(5):765. PubMed ID: 37555082 [TBL] [Abstract][Full Text] [Related]
4. Initiator-Free Photocuring 3D-Printable PVA-Based Hydrogel with Tunable Mechanical Properties and Cell Compatibility. Li C; Lu G; Wang G; Liu B; Xue T; Yuan H; Nie J; Zhu X Macromol Rapid Commun; 2023 Sep; 44(18):e2300214. PubMed ID: 37306260 [TBL] [Abstract][Full Text] [Related]
5. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing. Guo Z; Ma C; Xie W; Tang A; Liu W Carbohydr Polym; 2023 Sep; 315():121006. PubMed ID: 37230626 [TBL] [Abstract][Full Text] [Related]
6. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
7. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing. Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036 [TBL] [Abstract][Full Text] [Related]
8. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Gao Y; Peng J; Zhou M; Yang Y; Wang X; Wang J; Cao Y; Wang W; Wu D J Mater Chem B; 2020 Dec; 8(48):11010-11020. PubMed ID: 33188676 [TBL] [Abstract][Full Text] [Related]
9. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Zhang J; Wang Y; Wei Q; Wang Y; Li M; Li D; Zhang L Int J Biol Macromol; 2022 Oct; 219():1216-1226. PubMed ID: 36058388 [TBL] [Abstract][Full Text] [Related]
10. Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH Shao L; Li Y; Ma Z; Bai Y; Wang J; Zeng P; Gong P; Shi F; Ji Z; Qiao Y; Xu R; Xu J; Zhang G; Wang C; Ma J ACS Appl Mater Interfaces; 2020 Jun; 12(23):26496-26508. PubMed ID: 32406670 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Jiang X; Xiang N; Zhang H; Sun Y; Lin Z; Hou L Carbohydr Polym; 2018 Apr; 186():377-383. PubMed ID: 29456000 [TBL] [Abstract][Full Text] [Related]
12. Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators. Patel DK; Patil TV; Ganguly K; Dutta SD; Lim KT Carbohydr Polym; 2023 Sep; 315():120963. PubMed ID: 37230632 [TBL] [Abstract][Full Text] [Related]
13. Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems. Liu Y; Wang W; Gu K; Yao J; Shao Z; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(24):29008-29020. PubMed ID: 34121382 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy. Meng Y; Cao J; Chen Y; Yu Y; Ye L J Mater Chem B; 2020 Jan; 8(4):677-690. PubMed ID: 31859324 [TBL] [Abstract][Full Text] [Related]
15. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
16. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Liu F; Li W; Liu H; Yuan T; Yang Y; Zhou W; Hu Y; Yang Z Macromol Biosci; 2021 Apr; 21(4):e2000398. PubMed ID: 33624936 [TBL] [Abstract][Full Text] [Related]
17. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
18. κ-Carrageenan and PVA blends as bioinks to 3D print scaffolds for cartilage reconstruction. Muscolino E; Di Stefano AB; Trapani M; Sabatino MA; Giacomazza D; Alessi S; Cammarata E; Moschella F; Cordova A; Toia F; Dispenza C Int J Biol Macromol; 2022 Dec; 222(Pt B):1861-1875. PubMed ID: 36208815 [TBL] [Abstract][Full Text] [Related]
19. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
20. Self-Healable Conductive Hydrogels with High Stretchability and Ultralow Hysteresis for Soft Electronics. Prameswati A; Nurmaulia Entifar SA; Han JW; Wibowo AF; Kim JH; Sembiring YSB; Park J; Lee J; Lee AY; Song MH; Kim S; Lim DC; Eom Y; Heo S; Moon MW; Kim MS; Kim YH ACS Appl Mater Interfaces; 2023 May; 15(20):24648-24657. PubMed ID: 37170066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]