These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37836974)

  • 1. Neuron Contact Detection Based on Pipette Precise Positioning for Robotic Brain-Slice Patch Clamps.
    Li K; Gong H; Qiu J; Li R; Zhao Q; Zhao X; Sun M
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Based Pipette Positional Correction for Automatic Patch Clamp
    Gonzalez MM; Lewallen CF; Yip MC; Forest CR
    eNeuro; 2021; 8(4):. PubMed ID: 34312222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts.
    Landry CR; Yip MC; Kolb I; Stoy WA; Gonzalez MM; Forest CR
    Bio Protoc; 2021 Jul; 11(14):e4085. PubMed ID: 34395724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.
    Wu Q; Chubykin AA
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based real-time detection of neurons in brain slices for in vitro physiology.
    Yip MC; Gonzalez MM; Valenta CR; Rowan MJM; Forest CR
    Sci Rep; 2021 Mar; 11(1):6065. PubMed ID: 33727679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
    Annecchino LA; Morris AR; Copeland CS; Agabi OE; Chadderton P; Schultz SR
    Neuron; 2017 Aug; 95(5):1048-1055.e3. PubMed ID: 28858615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.
    Danker T; Braun F; Silbernagl N; Guenther E
    Assay Drug Dev Technol; 2016 Mar; 14(2):144-55. PubMed ID: 26991363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
    Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR
    J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A device for automated control of pipette internal pressure for patch-clamp recording.
    Heyward PM; Shipley MT
    J Neurosci Methods; 2003 Feb; 123(1):109-15. PubMed ID: 12581854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flip-the-tip: automated patch clamping based on glass electrodes.
    Fejtl M; Czubayko U; Hümmer A; Krauter T; Lepple-Wienhues A
    Methods Mol Biol; 2007; 403():71-85. PubMed ID: 18827988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleaning patch-clamp pipettes for immediate reuse.
    Kolb I; Stoy WA; Rousseau EB; Moody OA; Jenkins A; Forest CR
    Sci Rep; 2016 Oct; 6():35001. PubMed ID: 27725751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo.
    Stoy WA; Kolb I; Holst GL; Liew Y; Pala A; Yang B; Boyden ES; Stanley GB; Forest CR
    J Neurophysiol; 2017 Aug; 118(2):1141-1150. PubMed ID: 28592685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immediate reuse of patch-clamp pipettes after ultrasonic cleaning.
    Jehasse K; Jouhanneau JS; Wetz S; Schwedt A; Poulet JFA; Neumann-Raizel P; Kampa BM
    Sci Rep; 2024 Jan; 14(1):1660. PubMed ID: 38238544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo.
    Suk HJ; van Welie I; Kodandaramaiah SB; Allen B; Forest CR; Boyden ES
    Neuron; 2017 Aug; 95(5):1037-1047.e11. PubMed ID: 28858614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-polishing pipettes for improved patch-clamp recording.
    Johnson BE; Brown AL; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy].
    Yang X; Liu X; Zhang XF; Lu HJ; Zhang YJ
    Sheng Li Xue Bao; 2010 Jun; 62(3):275-83. PubMed ID: 20571746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Patch clamp recording in brain slice--modified blind method and the perforated patch clamp method].
    Zhang L
    Hua Xi Yi Ke Da Xue Xue Bao; 1998 Sep; 29(3):338-42. PubMed ID: 10684108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.