These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37837)
81. The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Min J; Zhang JJ; Zhou NY Appl Environ Microbiol; 2014 Oct; 80(19):6212-22. PubMed ID: 25085488 [TBL] [Abstract][Full Text] [Related]
82. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion. Wahidullah S; Naik DN; Devi P PLoS One; 2013; 8(12):e83647. PubMed ID: 24391802 [TBL] [Abstract][Full Text] [Related]
83. Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters in Burkholderia sp. strain SJ98. Vikram S; Pandey J; Kumar S; Raghava GP PLoS One; 2013; 8(12):e84766. PubMed ID: 24376843 [TBL] [Abstract][Full Text] [Related]
84. Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha. Jalilnejad E; Vahabzadeh F Environ Sci Pollut Res Int; 2014 Mar; 21(6):4592-604. PubMed ID: 24338109 [TBL] [Abstract][Full Text] [Related]
85. Crystal structure of the γ-hydroxymuconic semialdehyde dehydrogenase from Pseudomonas sp. strainWBC-3, a key enzyme involved in para-Nitrophenol degradation. Su J; Zhang C; Zhang JJ; Wei T; Zhu D; Zhou NY; Gu Lc BMC Struct Biol; 2013 Nov; 13():30. PubMed ID: 24252642 [TBL] [Abstract][Full Text] [Related]
86. Expression, purification, crystallization and preliminary X-ray analysis of para-nitrophenol 4-monooxygenase from Pseudomonas putida DLL-E4. Liu W; Shen W; Zhao X; Cao H; Cui Z Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Oct; 65(Pt 10):1004-6. PubMed ID: 19851007 [TBL] [Abstract][Full Text] [Related]
87. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. Zhang JJ; Liu H; Xiao Y; Zhang XE; Zhou NY J Bacteriol; 2009 Apr; 191(8):2703-10. PubMed ID: 19218392 [TBL] [Abstract][Full Text] [Related]
88. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. Takeo M; Murakami M; Niihara S; Yamamoto K; Nishimura M; Kato D; Negoro S J Bacteriol; 2008 Nov; 190(22):7367-74. PubMed ID: 18805976 [TBL] [Abstract][Full Text] [Related]
89. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. Perry LL; Zylstra GJ J Bacteriol; 2007 Nov; 189(21):7563-72. PubMed ID: 17720792 [TBL] [Abstract][Full Text] [Related]
90. Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. Xiao Y; Zhang JJ; Liu H; Zhou NY J Bacteriol; 2007 Sep; 189(18):6587-93. PubMed ID: 17616586 [TBL] [Abstract][Full Text] [Related]
91. Catabolism of 3-Nitrophenol by Ralstonia eutropha JMP 134. Schenzle A; Lenke H; Fischer P; Williams PA; Knackmuss H Appl Environ Microbiol; 1997 Apr; 63(4):1421-7. PubMed ID: 16535572 [TBL] [Abstract][Full Text] [Related]
92. Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Lenke H; Knackmuss H Appl Environ Microbiol; 1996 Mar; 62(3):784-90. PubMed ID: 16535270 [TBL] [Abstract][Full Text] [Related]
93. Oxidative Pathway for the Biodegradation of Nitrobenzene by Comamonas sp. Strain JS765. Nishino SF; Spain JC Appl Environ Microbiol; 1995 Jun; 61(6):2308-13. PubMed ID: 16535050 [TBL] [Abstract][Full Text] [Related]
94. Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Spain JC; Gibson DT Appl Environ Microbiol; 1991 Mar; 57(3):812-9. PubMed ID: 16348446 [TBL] [Abstract][Full Text] [Related]
95. Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Hess TF; Schmidt SK; Silverstein J; Howe B Appl Environ Microbiol; 1990 Jun; 56(6):1551-8. PubMed ID: 16348203 [TBL] [Abstract][Full Text] [Related]
96. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Bruhn C; Lenke H; Knackmuss HJ Appl Environ Microbiol; 1987 Jan; 53(1):208-10. PubMed ID: 16347259 [TBL] [Abstract][Full Text] [Related]
97. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Spain JC; Van Veld PA Appl Environ Microbiol; 1983 Feb; 45(2):428-35. PubMed ID: 16346193 [TBL] [Abstract][Full Text] [Related]
98. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Serdar CM; Gibson DT; Munnecke DM; Lancaster JH Appl Environ Microbiol; 1982 Jul; 44(1):246-9. PubMed ID: 16346063 [TBL] [Abstract][Full Text] [Related]
99. Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Siddavattam D; Khajamohiddin S; Manavathi B; Pakala SB; Merrick M Appl Environ Microbiol; 2003 May; 69(5):2533-9. PubMed ID: 12732518 [TBL] [Abstract][Full Text] [Related]
100. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Behrend C; Heesche-Wagner K Appl Environ Microbiol; 1999 Apr; 65(4):1372-7. PubMed ID: 10103224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]