These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. An IoT-Focused Intrusion Detection System Approach Based on Preprocessing Characterization for Cybersecurity Datasets. Larriva-Novo X; Villagrá VA; Vega-Barbas M; Rivera D; Sanz Rodrigo M Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477875 [TBL] [Abstract][Full Text] [Related]
43. SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks. Patil NV; Krishna CR; Kumar K Cluster Comput; 2022; 25(2):1355-1372. PubMed ID: 35068996 [TBL] [Abstract][Full Text] [Related]
44. Botnet Detection and Mitigation Model for IoT Networks Using Federated Learning. de Caldas Filho FL; Soares SCM; Oroski E; de Oliveira Albuquerque R; da Mata RZA; de Mendonça FLL; de Sousa Júnior RT Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514600 [TBL] [Abstract][Full Text] [Related]
45. Research on Anomaly Network Detection Based on Self-Attention Mechanism. Hu W; Cao L; Ruan Q; Wu Q Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299786 [TBL] [Abstract][Full Text] [Related]
46. Methodology for the Detection of Contaminated Training Datasets for Machine Learning-Based Network Intrusion-Detection Systems. Medina-Arco JG; Magán-Carrión R; Rodríguez-Gómez RA; García-Teodoro P Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257574 [TBL] [Abstract][Full Text] [Related]
47. Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis. Gao M; Ma L; Liu H; Zhang Z; Ning Z; Xu J Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155834 [TBL] [Abstract][Full Text] [Related]
48. Classification model for accuracy and intrusion detection using machine learning approach. Agarwal A; Sharma P; Alshehri M; Mohamed AA; Alfarraj O PeerJ Comput Sci; 2021; 7():e437. PubMed ID: 33954233 [TBL] [Abstract][Full Text] [Related]
49. Detection and mitigation of DDoS attacks based on multi-dimensional characteristics in SDN. Wang K; Fu Y; Duan X; Liu T Sci Rep; 2024 Jul; 14(1):16421. PubMed ID: 39014041 [TBL] [Abstract][Full Text] [Related]
50. Boğaziçi University distributed denial of service dataset. Erhan D; Anarım E Data Brief; 2020 Oct; 32():106187. PubMed ID: 32904236 [TBL] [Abstract][Full Text] [Related]
51. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation. Vaiyapuri T; Binbusayyis A PeerJ Comput Sci; 2020; 6():e327. PubMed ID: 33816977 [TBL] [Abstract][Full Text] [Related]
52. A multi-information fusion anomaly detection model based on convolutional neural networks and AutoEncoder. Zhao Z; Guo H; Wang Y Sci Rep; 2024 Jul; 14(1):16147. PubMed ID: 38997340 [TBL] [Abstract][Full Text] [Related]
53. Robust genetic machine learning ensemble model for intrusion detection in network traffic. Akhtar MA; Qadri SMO; Siddiqui MA; Mustafa SMN; Javaid S; Ali SA Sci Rep; 2023 Oct; 13(1):17227. PubMed ID: 37821521 [TBL] [Abstract][Full Text] [Related]
55. End-to-End Network Intrusion Detection Based on Contrastive Learning. Li L; Lu Y; Yang G; Yan X Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610334 [TBL] [Abstract][Full Text] [Related]
56. Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Aldhyani THH; Alkahtani H Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009899 [TBL] [Abstract][Full Text] [Related]
57. SEHIDS: Self Evolving Host-Based Intrusion Detection System for IoT Networks. Baz M Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080962 [TBL] [Abstract][Full Text] [Related]
58. VMFCVD: An Optimized Framework to Combat Volumetric DDoS Attacks using Machine Learning. Prasad A; Chandra S Arab J Sci Eng; 2022; 47(8):9965-9983. PubMed ID: 35096507 [TBL] [Abstract][Full Text] [Related]
59. Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems. Fährmann D; Damer N; Kirchbuchner F; Kuijper A Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458871 [TBL] [Abstract][Full Text] [Related]
60. The Proposition and Evaluation of the RoEduNet-SIMARGL2021 Network Intrusion Detection Dataset. Mihailescu ME; Mihai D; Carabas M; Komisarek M; Pawlicki M; Hołubowicz W; Kozik R Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]