These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Ultrasoft and Biocompatible Magnetic-Hydrogel-Based Strain Sensors for Wireless Passive Biomechanical Monitoring. Zhang Q; Yang G; Xue L; Dong G; Su W; Cui MJ; Wang ZG; Liu M; Zhou Z; Zhang X ACS Nano; 2022 Dec; 16(12):21555-21564. PubMed ID: 36479886 [TBL] [Abstract][Full Text] [Related]
27. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks. Effatparvar M; Dehghan M; Rahmani AM J Med Syst; 2016 Sep; 40(9):201. PubMed ID: 27468842 [TBL] [Abstract][Full Text] [Related]
28. Residual Energy Estimation-Based MAC Protocol for Wireless Powered Sensor Networks. Lee SB; Kwon JH; Kim EJ Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833689 [TBL] [Abstract][Full Text] [Related]
29. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities. Izadgoshasb I Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960426 [TBL] [Abstract][Full Text] [Related]
30. EPMOSt: an energy-efficient passive monitoring system for wireless sensor networks. Garcia FP; Andrade RM; Oliveira CT; de Souza JN Sensors (Basel); 2014 Jun; 14(6):10804-28. PubMed ID: 24949639 [TBL] [Abstract][Full Text] [Related]
31. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components. Rinne J; Keskinen J; Berger PR; Lupo D; Valkama M Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453515 [TBL] [Abstract][Full Text] [Related]
32. Energy scavenging for long-term deployable wireless sensor networks. Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122 [TBL] [Abstract][Full Text] [Related]
33. Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. De Santis M; Cacciotti I Nanotechnology; 2020 Apr; 31(25):252001. PubMed ID: 32101794 [TBL] [Abstract][Full Text] [Related]
34. Passive Sensors for Long Duration Internet of Things Networks. Pereira F; Correia R; Carvalho NB Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28972554 [TBL] [Abstract][Full Text] [Related]
35. From Biochemical Sensor to Wearable Device: The Key Role of the Conductive Polymer in the Triboelectric Nanogenerator. Zhao Z; Mi Y; Lu Y; Zhu Q; Cao X; Wang N Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37366969 [TBL] [Abstract][Full Text] [Related]
36. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Luo Y; Pu L; Wang G; Zhao Y Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288456 [TBL] [Abstract][Full Text] [Related]
37. Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications. Chatterjee S; Burman SR; Khan I; Saha S; Choi D; Lee S; Lin ZH Nanoscale; 2020 Sep; 12(34):17663-17697. PubMed ID: 32821897 [TBL] [Abstract][Full Text] [Related]
38. Thermal energy harvester powered piezoresistive pressure sensor system with wireless operation for nuclear reactor application. Aparna J; Philip S; Topkar A Rev Sci Instrum; 2019 Apr; 90(4):044705. PubMed ID: 31042987 [TBL] [Abstract][Full Text] [Related]
39. Recent progress of nanogenerators acting as biomedical sensors in vivo. Sun J; Yang A; Zhao C; Liu F; Li Z Sci Bull (Beijing); 2019 Sep; 64(18):1336-1347. PubMed ID: 36659663 [TBL] [Abstract][Full Text] [Related]
40. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Jiang M; Lu Y; Zhu Z; Jia W Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34203757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]