BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37837040)

  • 21. Automated detection and recognition system for chewable food items using advanced deep learning models.
    Kumar Y; Koul A; Kamini ; Woźniak M; Shafi J; Ijaz MF
    Sci Rep; 2024 Mar; 14(1):6589. PubMed ID: 38504098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals.
    Choi YA; Park SJ; Jun JA; Pyo CS; Cho KH; Lee HS; Yu JH
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel flexible sensing technology for nondestructive detection on live fish health/quality during waterless and low-temperature transportation.
    Feng H; Fu Y; Huang S; Glamuzina B; Zhang X
    Biosens Bioelectron; 2023 May; 228():115211. PubMed ID: 36917894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Teenager Physical Fitness Evaluation Model Based on 1D-CNN with LSTM and Wearable Running PPG Recordings.
    Guo J; Wan B; Zheng S; Song A; Huang W
    Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.
    Ahmad S; Ullah T; Ahmad I; Al-Sharabi A; Ullah K; Khan RA; Rasheed S; Ullah I; Uddin MN; Ali MS
    Comput Intell Neurosci; 2022; 2022():8141530. PubMed ID: 35785076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model.
    Sun P; Zhao W
    Sci Total Environ; 2024 Mar; 915():169699. PubMed ID: 38181943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A robust multiple heartbeats classification with weight-based loss based on convolutional neural network and bidirectional long short-term memory.
    Yang M; Liu W; Zhang H
    Front Physiol; 2022; 13():982537. PubMed ID: 36545286
    [No Abstract]   [Full Text] [Related]  

  • 30. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors.
    Cuperman R; Jansen KMB; Ciszewski MG
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.
    Jiang Y; Song L; Zhang J; Song Y; Yan M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpretation of Electrocardiogram Heartbeat by CNN and GRU.
    Yao G; Mao X; Li N; Xu H; Xu X; Jiao Y; Ni J
    Comput Math Methods Med; 2021; 2021():6534942. PubMed ID: 34497664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor.
    Arshad MZ; Jamsrandorj A; Kim J; Mun KR
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Machine Learning Model Based on GRU and LSTM to Predict the Environmental Parameters in a Layer House, Taking CO
    Chen X; Yang L; Xue H; Li L; Yu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.
    Sano A; Taylor S; McHill AW; Phillips AJ; Barger LK; Klerman E; Picard R
    J Med Internet Res; 2018 Jun; 20(6):e210. PubMed ID: 29884610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database-HF_Lung_V1.
    Hsu FS; Huang SR; Huang CW; Huang CJ; Cheng YR; Chen CC; Hsiao J; Chen CW; Chen LC; Lai YC; Hsu BF; Lin NJ; Tsai WL; Wu YL; Tseng TL; Tseng CT; Chen YT; Lai F
    PLoS One; 2021; 16(7):e0254134. PubMed ID: 34197556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-Input CNN-LSTM deep learning model for fear level classification based on EEG and peripheral physiological signals.
    Masuda N; Yairi IE
    Front Psychol; 2023; 14():1141801. PubMed ID: 37325747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal.
    Bagherzadeh S; Shahabi MS; Shalbaf A
    Comput Biol Med; 2022 Jul; 146():105570. PubMed ID: 35504218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning for predicting respiratory rate from biosignals.
    Kumar AK; Ritam M; Han L; Guo S; Chandra R
    Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.