BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37837106)

  • 21. Gait Characteristics under Imposed Challenge Speed Conditions in Patients with Parkinson's Disease During Overground Walking.
    Lee M; Youm C; Noh B; Park H; Cheon SM
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent validity of walking speed measured by a wearable sensor and a stopwatch during the 10-meter walk test in individuals with stroke.
    Cleland BT; Alex T; Madhavan S
    Gait Posture; 2024 Jan; 107():61-66. PubMed ID: 37757594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the walking speed of individuals with transfemoral amputation from a single prosthetic shank-mounted IMU.
    Dauriac B; Bonnet X; Pillet H; Lavaste F
    Proc Inst Mech Eng H; 2019 Sep; 233(9):931-937. PubMed ID: 31218905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: the effects of walking speed and asymmetry.
    Lanotte F; Shin SY; O'Brien MK; Jayaraman A
    Physiol Meas; 2023 Aug; 44(8):. PubMed ID: 37557187
    [No Abstract]   [Full Text] [Related]  

  • 25. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial.
    Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I
    JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guided Exploration Leads to Faster Familiarization with a Wearable Robot: First Results of an Innovative Protocol.
    Koginov G; Wolf P; Schmidt K; Duarte JE; Riener R
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm.
    Rattanasak A; Uthansakul P; Uthansakul M; Jumphoo T; Phapatanaburi K; Sindhupakorn B; Rooppakhun S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking.
    Arumukhom Revi D; De Rossi SMM; Walsh CJ; Awad LN
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IMU-Based Real-Time Estimation of Gait Phase Using Multi-Resolution Neural Networks.
    Tang L; Shushtari M; Arami A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges.
    Soltani A; Aminian K; Mazza C; Cereatti A; Palmerini L; Bonci T; Paraschiv-Ionescu A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1955-1964. PubMed ID: 34506286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Wearable Computer Vision System With Gimbal Enables Position-, Speed-, and Phase-Independent Terrain Classification for Lower Limb Prostheses.
    Li L; Wang X; Meng Q; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4539-4548. PubMed ID: 37938959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Wearable Walking Gait Speed-Sensing Device using Frequency Bifurcations of Multi-Resonator Inductive Link.
    Yang X; Jiang L; Giri S; Ostadabbas S; Abdollah Mirbozorgi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7272-7275. PubMed ID: 34892777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of Walking Speed Estimation from Trunk Mounted Accelerometers for a Range of Walking Speeds.
    Rispens SM; Cox LGE; Ejupi A; Delbaere K; Annegarn J; Bonomi AG
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.