These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37837145)

  • 21. Optimized, Omnidirectional Surface Acoustic Wave Source: 152° Y-Rotated Cut of Lithium Niobate for Acoustofluidics.
    Zhang N; Mei J; Gopesh T; Friend J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2176-2186. PubMed ID: 32396083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization of Surface Acoustic Waves in Thin Liquid Films.
    Rambach RW; Taiber J; Scheck CM; Meyer C; Reboud J; Cooper JM; Franke T
    Sci Rep; 2016 Feb; 6():21980. PubMed ID: 26917490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FE analysis of surface acoustic wave transmission in composite piezoelectric wedge structures.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2018 Mar; 84():366-372. PubMed ID: 29241057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction and measurement of boundary waves at the interface between LiNbO3 and silicon.
    Gachon D; Daniau W; Courjon E; Laude V; Ballandras S; Majjad H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1655-63. PubMed ID: 20639159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity.
    Li Y; Wei S; Zheng T
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder.
    Liang S; Chaohui W
    Phys Rev E; 2018 Mar; 97(3-1):033103. PubMed ID: 29776072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FEM Simulation of a High-Performance 128°Y-X LiNbO
    Ma R; Liu W; Sun X; Zhou S; Lin D
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of Nonlinear Resonance, Amplitude-Frequency, and Harmonic Generation Effects in SAW and BAW Devices.
    Pang X; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):422-430. PubMed ID: 31603776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Features of the Formation of Sensitive Films Based on Mycelium of Higher Fungi for Surface and Plate Acoustic Waves Gas Sensors.
    Smirnov A; Anisimkin V; Krasnopolskaya L; Guliy O; Sinev I; Simakov V; Golyshkin A; Almyasheva N; Ageykin N; Kuznetsova I
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust global arrangement by coherent enhancement in Huygens-Fresnel traveling surface acoustic wave interference field.
    Yu N; Geng W; Liu Y; Zhang H; Lu H; Duan Z; Yang L; Zhang Y; Chou X
    Anal Bioanal Chem; 2024 Jan; 416(2):509-518. PubMed ID: 37989848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New method of change in temperature coefficient delay of acoustic waves in thin piezoelectric plates.
    Zaitsev BD; Kuznetsova IE; Joshi SG; Kuznetsova AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2113-20. PubMed ID: 17091846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).
    Chen Y; Li S; Gu Y; Li P; Ding X; Wang L; McCoy JP; Levine SJ; Huang TJ
    Lab Chip; 2014 Mar; 14(5):924-30. PubMed ID: 24413889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable nanowire patterning using standing surface acoustic waves.
    Chen Y; Ding X; Steven Lin SC; Yang S; Huang PH; Nama N; Zhao Y; Nawaz AA; Guo F; Wang W; Gu Y; Mallouk TE; Huang TJ
    ACS Nano; 2013 Apr; 7(4):3306-14. PubMed ID: 23540330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
    Ren L; Yang S; Zhang P; Qu Z; Mao Z; Huang PH; Chen Y; Wu M; Wang L; Li P; Huang TJ
    Small; 2018 Oct; 14(40):e1801996. PubMed ID: 30168662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of propagating and standing surface acoustic waves by stroboscopic X-ray photoemission electron microscopy.
    Foerster M; Statuto N; Casals B; Hernández-Mínguez A; Finizio S; Mandziak A; Aballe L; Hernàndez Ferràs JM; Macià F
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):184-193. PubMed ID: 30655484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.