These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37837172)

  • 1. Non-Invasive Blood Pressure Sensing via Machine Learning.
    Attivissimo F; D'Alessandro VI; De Palma L; Lanzolla AML; Di Nisio A
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring.
    Attivissimo F; De Palma L; Di Nisio A; Scarpetta M; Lanzolla AML
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique.
    Khan Mamun MMR
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34633299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques.
    Chowdhury MH; Shuzan MNI; Chowdhury MEH; Mahbub ZB; Uddin MM; Khandakar A; Reaz MBI
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 11. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of Boosting Algorithms in Continuous Non-Invasive Cuff-less Blood Pressure Estimation using Pulse Arrival Time.
    Ghosh A; Chatterjee T; Sarkar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5429-5432. PubMed ID: 34892354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography.
    Wu H; Ji Z; Li M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals.
    Haque CA; Kwon TH; Kim KD
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Non-Invasive Continuous Blood Pressure Estimation Approach Based on Machine Learning.
    Chen S; Ji Z; Wu H; Xu Y
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Algorithms based Cuff-less Blood Pressure Estimation from Clinically Relevant ECG and PPG Morphological Features.
    Ghosh A; Sarkar S; Liu H; Mandal S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography.
    Kefeng Duan ; Zhiliang Qian ; Atef M; Guoxing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6385-6388. PubMed ID: 28269709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.