BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37837547)

  • 1. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing.
    Yadav B; Majhi A; Phagna K; Meena MK; Ram H
    Funct Integr Genomics; 2023 Oct; 23(4):317. PubMed ID: 37837547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities.
    Fiaz S; Ahmad S; Noor MA; Wang X; Younas A; Riaz A; Riaz A; Ali F
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Guided Mutagenesis of
    Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-Mediated Genome Editing of Rice Towards Better Grain Quality.
    Bandyopadhyay A; Yin X; Biswal A; Coe R; Quick WP
    Methods Mol Biol; 2019; 1892():311-336. PubMed ID: 30397814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed Editing of Rice (
    Usman B; Nawaz G; Zhao N; Liao S; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops.
    Wang T; Zhang C; Zhang H; Zhu H
    J Agric Food Chem; 2021 Nov; 69(45):13260-13269. PubMed ID: 33734711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Expression of QTL
    Fu X; Xu J; Zhou M; Chen M; Shen L; Li T; Zhu Y; Wang J; Hu J; Zhu L; Gao Z; Dong G; Guo L; Ren D; Chen G; Lin J; Qian Q; Zhang G
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome edited wheat- current advances for the second green revolution.
    Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S
    Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations.
    Wang G; Wang C; Lu G; Wang W; Mao G; Habben JE; Song C; Wang J; Chen J; Gao Y; Liu J; Greene TW
    Plant Mol Biol; 2020 Sep; 104(1-2):137-150. PubMed ID: 32623622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing grain shape, thermotolerance, and alkaline tolerance via Gγ protein manipulation in rice.
    Xu N; Qiu Y; Cui X; Fei C; Xu Q
    Theor Appl Genet; 2024 Jun; 137(7):154. PubMed ID: 38856926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid improvement of grain appearance in three-line hybrid rice via CRISPR/Cas9 editing of grain size genes.
    Huang J; Chen W; Gao L; Qing D; Pan Y; Zhou W; Wu H; Li J; Ma C; Zhu C; Dai G; Deng G
    Theor Appl Genet; 2024 Jun; 137(7):173. PubMed ID: 38937300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.