These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37837653)
1. Three epochs on estimating the parameter values of thermodynamic Sharpe-Schoolfield-Ikemoto (SSI) model describing the relation of temperature and insect development rate. Ikemoto T; Kurahashi I Environ Entomol; 2023 Dec; 52(6):957-969. PubMed ID: 37837653 [TBL] [Abstract][Full Text] [Related]
2. Novel Method of Specifying Low and High Threshold Temperatures Using Thermodynamic SSI Model of Insect Development. Ikemoto T; Kiritani K Environ Entomol; 2019 Jun; 48(3):479-488. PubMed ID: 30993314 [TBL] [Abstract][Full Text] [Related]
3. Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model. Ikemoto T; Kurahashi I; Shi PJ Insect Sci; 2013 Jun; 20(3):420-8. PubMed ID: 23955893 [TBL] [Abstract][Full Text] [Related]
4. Performance of the SSI development function compared with 33 other functions applied to 79 arthropod species' datasets. Quinn BK J Therm Biol; 2021 Dec; 102():103112. PubMed ID: 34863475 [TBL] [Abstract][Full Text] [Related]
5. Effects of Temperature on Development and Survival of Orthopygia glaucinalis (Lepidoptera: Pyralidae) Reared on Platycarya strobilacea. Liu JF; Yang MF; Hu JF; Han C J Econ Entomol; 2015 Apr; 108(2):504-14. PubMed ID: 26470161 [TBL] [Abstract][Full Text] [Related]
6. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). Moallem Z; Karimi-Malati A; Sahragard A; Zibaee A J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423429 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic optimum temperature of the diamondback moth and its ecological meaning. Shi P; Li BL; Ge F Environ Entomol; 2012 Jun; 41(3):714-22. PubMed ID: 22732631 [TBL] [Abstract][Full Text] [Related]
9. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (hemiptera: pseudococcidae) in response to constant temperatures on hibiscus. Sreedevi G; Prasad YG; Prabhakar M; Rao GR; Vennila S; Venkateswarlu B PLoS One; 2013; 8(9):e75636. PubMed ID: 24086597 [TBL] [Abstract][Full Text] [Related]
10. Use and misuse of temperature normalisation in meta-analyses of thermal responses of biological traits. Kontopoulos DG; García-Carreras B; Sal S; Smith TP; Pawar S PeerJ; 2018; 6():e4363. PubMed ID: 29441242 [TBL] [Abstract][Full Text] [Related]
11. A biophysical interpretation of temperature-dependent body size in Drosophila aldrichi and D. buzzatii. de Jong G J Therm Biol; 2010 Feb; 35(2):85-99. PubMed ID: 28799917 [TBL] [Abstract][Full Text] [Related]
12. Temperature-dependent development of diapausing larvae of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). Dhillon MK; Hasan F J Therm Biol; 2017 Oct; 69():213-220. PubMed ID: 29037385 [TBL] [Abstract][Full Text] [Related]
13. Erroneous Arrhenius: modified arrhenius model best explains the temperature dependence of ectotherm fitness. Knies JL; Kingsolver JG Am Nat; 2010 Aug; 176(2):227-33. PubMed ID: 20528477 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature. Van Derlinden E; Bernaerts K; Van Impe JF J Theor Biol; 2010 May; 264(2):347-55. PubMed ID: 20064532 [TBL] [Abstract][Full Text] [Related]
15. Assessing thermodynamic parameter sensitivity for simulating temperature responses of soil nitrification. Mukhtar H; Lin YP; Lin CM; Petway JR Environ Sci Process Impacts; 2019 Sep; 21(9):1596-1608. PubMed ID: 31414689 [TBL] [Abstract][Full Text] [Related]
16. [Temperature changes in a model of the rabbit's body under extreme cooling taking into account the effect of Arrhenius' law on the intensity of heat production]. Rumiantsev GV; Morozov GB Ross Fiziol Zh Im I M Sechenova; 1997 Aug; 83(8):106-10. PubMed ID: 9487058 [TBL] [Abstract][Full Text] [Related]
17. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography. McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ J Chromatogr A; 2014 Jan; 1325():204-12. PubMed ID: 24377740 [TBL] [Abstract][Full Text] [Related]
19. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates. von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719 [TBL] [Abstract][Full Text] [Related]
20. Interactive Effects of Temperature and Plant Host on the Development Parameters of Maharjan R; Ahn J; Yi H Insects; 2022 Aug; 13(8):. PubMed ID: 36005372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]