These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37837699)

  • 41. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum, and Galium aparine.
    Lu Q; Li J; Chen F; Liao M; Lin L; Tang Y; Liang D; Xia H; Lai Y; Wang X; Chen C; Ren W
    Environ Monit Assess; 2017 Nov; 189(12):622. PubMed ID: 29124423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii.
    Ge J; Tao J; Zhao J; Wu Z; Zhang H; Gao Y; Tian S; Xie R; Xu S; Lu L
    Ecotoxicol Environ Saf; 2022 Aug; 241():113795. PubMed ID: 35753274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution.
    He C; Zhao Y; Wang F; Oh K; Zhao Z; Wu C; Zhang X; Chen X; Liu X
    Chemosphere; 2020 Aug; 252():126471. PubMed ID: 32220713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effects of Exogenous Plant Hormone Spraying on the Phytoremediation by
    Yang Q; Xie JT; Zhang ZP; Yang Z; Fang ZG; Li ZH; Zhao WL; Liu HJ; Du ST
    Huan Jing Ke Xue; 2023 Oct; 44(10):5757-5768. PubMed ID: 37827791
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The yield potential and growth responses of licorice (
    Tabrizi L; Lakzaei M; Motesharezadeh B
    Int J Phytoremediation; 2021; 23(3):316-327. PubMed ID: 32898452
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake.
    Syed A; Elgorban AM; Bahkali AH; Eswaramoorthy R; Iqbal RK; Danish S
    Sci Rep; 2023 Mar; 13(1):4471. PubMed ID: 36934106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial.
    Li X; Xiao J; Salam MMA; Chen G
    Sci Total Environ; 2022 Dec; 851(Pt 1):158232. PubMed ID: 36007636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Screening for Cd-Safe Cultivars of Chinese Cabbage and a Preliminary Study on the Mechanisms of Cd Accumulation.
    Wang J; Yu N; Mu G; Shinwari KI; Shen Z; Zheng L
    Int J Environ Res Public Health; 2017 Apr; 14(4):. PubMed ID: 28387709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity.
    Cui X; Mao P; Sun S; Huang R; Fan Y; Li Y; Li Y; Zhuang P; Li Z
    Chemosphere; 2021 Nov; 283():131067. PubMed ID: 34144285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb.
    Gonçalves AC; Schwantes D; Braga de Sousa RF; Benetoli da Silva TR; Guimarães VF; Campagnolo MA; Soares de Vasconcelos E; Zimmermann J
    J Environ Manage; 2020 May; 262():110342. PubMed ID: 32250818
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils.
    Jin Z; Deng S; Wen Y; Jin Y; Pan L; Zhang Y; Black T; Jones KC; Zhang H; Zhang D
    Sci Total Environ; 2019 Dec; 697():134148. PubMed ID: 31479903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.
    Shumaker KL; Begonia G
    Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, "AI001, and AI002" mediate cadmium translocation and phytoremediation.
    Ullah I; Mateen A; Ahmad MA; Munir I; Iqbal A; Alghamdi KMS; Al-Solami HM; Siddiqui MF
    Environ Pollut; 2022 Jan; 293():118508. PubMed ID: 34793914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development.
    Zhang J; Martinoia E; Lee Y
    Plant Cell Physiol; 2018 Jul; 59(7):1317-1325. PubMed ID: 29361141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 24-epibrassinolide treatment and intercropping willow with alfalfa increase the efficiency of the phytoremediation of cadmium-contaminated soil.
    Li Y; Dong Q; Wu D; Yin Y; Du W; Guo H
    Sci Total Environ; 2023 Jan; 854():158471. PubMed ID: 36063946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus.
    Grzegórska A; Czaplicka N; Antonkiewicz J; Rybarczyk P; Baran A; Dobrzyński K; Zabrocki D; Rogala A
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22305-22318. PubMed ID: 36287369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arbuscular mycorrhizal fungi and nitric oxide alleviate cadmium phytotoxicity by improving internal detoxification mechanisms of corn plants.
    Zare L; Ronaghi A; Ghasemi-Fasaei R; Zarei M; Sepehri M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93602-93616. PubMed ID: 37507565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China.
    Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.